1A02 2024年秋の大会

電荷およびチェレンコフ光の解析に基づく TIBr ガンマ線検出器の特性評価

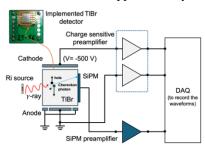
Characterization of TlBr Gamma Detector Based on Electrical Charge and Cherenkov Light Analysis

*封 博宇¹, Moh HAMDAN¹, 人見 啓太朗², 上ノ町 水紀³, 野上 光博², 豊川 秀訓⁴, 島添 健次¹ 「東京大学, ²東北大学, ³東京工業大学, ⁴JASRI

In this study, we developed a Thallium Bromide (TlBr) semiconductor detector, featuring a pixelated anode and a planar cathode, for room-temperature gamma-ray detection. Time resolution assessments indicated potential performance in the picosecond range, showcasing the capability of TlBr for precise energy resolution and time resolution.

キーワード: 臭化タリウム検出器, チェレンコフ光, ガンマ線検出器

1. 緒言 (Introduction)


Thallium Bromide (TlBr) semiconductors are highly valued for room-temperature gamma-ray detection due to their high crystal resistivity and photon-stopping power. [1] Detecting Cherenkov photons from gamma-ray interactions significantly enhances the timing performance of TlBr detectors. [2][3] This study focuses on characterizing TlBr by analyzing electrical charge carriers and Cherenkov light, emphasizing energy resolution, drift time, and time resolution.

2. 実験方法 (Method)

TIBr detector consisted of a 5 mm × 5 mm crystal with a planar cathode, pixelated anode, and surrounding ground electrode to minimize pulse-height loss from hole trapping. Signals from charge carriers and Cherenkov light were read concurrently. The waveform characteristics are influenced by recombination, trapping, electric field non-uniformity, and variations in charge collection efficiency. Therefore, we perform depth of interaction (DoI) analysis based on the pulse height of charge carrier signals to enhance energy resolution.

3. 結果(Result)

The energy resolution of TlBr improved to 1.94% FWHM at 662 keV with the filtered waveform-based depth of interaction analysis, correlating time drift (2 μ s to 30 μ s) with the DoI parameters. The 5 × 5 × 5 mm³ TlBr crystal achieved a time resolution of approximately 511 ps at 6 p.e.

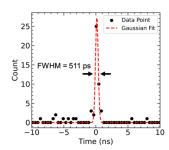


Fig.1. TIBr characterization using electrical and optical readout system

Fig.2.Experimental setup

Fig.3.Time resolution distribution at 6 p.e.

参考文献(Reference)

- [1] K. Hitomi et al., Nucl. Instrum. Methods Phys. Res. A 607 (2009) 112-115.
- [2] Hitomi K et al., 2023 Jpn. J. Appl. Phys. 62 081001.
- [3] Ariño-Estrada G et al., 2021 Phys. Med. Biol. 66 044001.

^{*}Boyu Feng¹, HAMDAN Moh¹, Keitaro Hitomi², Mizuki Uenomachi³, Mitsuhiro Nogami², Hidenori Toyokawa⁴, Kenji Shimazoe¹ UTokyo., ²Tohoku Univ., ³Tokyo Inst. of Tech., ⁴JASRI.