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In today’s quantum computers, gate errors accumulate as the circuit deepens, making it difficult to perform
high-precision calculations. Therefore, it is important to realize shallower circuits in quantum calculations. In this study,
we developed an efficient implementation of the complex-parameter UCC (Unitary Coupled-Cluster) circuit and found
a clear improvement in accuracy compared to the conventional method.
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1. Introduction

The UCC method is a representative method for quantum chemistry calculations of multi-electron systems,
but its naive implementation is very deep and has accuracy problems. We have extended the real-parameter UCC circuit
proposed by Yordanov et al. [1] to complex parameters with almost no change in depth, enabling more efficient
calculations of a wider range of multi-electron systems.
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2-1. Naive Implementation
When implemented naively, the single fermionic excitation operator that excites 2 electrons results in a deep
circuit with 2 pairs of CNOT ladders for a real parameter and 4 pairs for a complex parameter.
2-2. Efficient Implementation
A more efficient method has been proposed by Yordanov et al.
which has only 1 pair of CNOT ladders for a real parameter 6. When
extending this parameter to a complex number and representing the
complex parameter in rectangular form (t = 6 .t i0 2), the number of

CNOT ladder pairs doubles (Fig. 2)[2]. However, with the method we  Fi9: 2{ Comlp'efx circuit  Fig. 3|‘ %Omp'ex circuit
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(Fig. 3) by representing the parameter in polar form (t = GeD‘).

3. Results and Discussion

To validate the proposed method, we implemented a four-qubit single-electron excitation operator with a
complex parameter using both the naive and proposed methods (Fig. 4, 5). The number of pairs of CNOT ladders in this
example is 4 and 1, respectively. We set the parameters to 91 = 62 = 0 = m/4, A = /2 so that the theoretical values

of the output are equal.
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Fig. 4. The naive method Fig. 5. The proposed method

The circuit output was sampled on a real quantum computer (IBM Osaka), and the results are shown in Fig. 6.
While the exact solution only produces outputs of 0011 and 1010, the naive implementation shows noticeable incorrect
values even after error mitigation, while the proposed method significantly suppresses such values.
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Fig. 6. Sampling results for the naive method Fig. 7. Sampling results for the proposed method
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