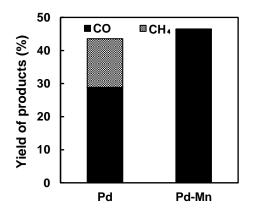
担持 Pd 触媒を用いた逆水性ガスシフト反応における Mn の添加効果


(¹京大院工・²京大 ESICB・³京大福井センター) ○大谷 優友 ¹・岡 晋太朗 ¹・浪 花 晋平 ¹・井口 翔之 ¹・田中 庸裕 ^{1,2,3}・寺村 謙太郎 ^{1,2,3}

Addition effect of Mn in reverse water gas shift reaction over supported Pd catalysts (¹ *Graduate School of Engineering, Kyoto University,* ²*ESICB, Kyoto University,* ³*Fukui Institute for Fundamental Chemistry, Kyoto University)* Yuto Ohtani, ¹ Shintaro Oka, ¹ Shimpei Naniwa, ¹ Shoji Iguchi, ¹ Tsunehiro Tanaka, ^{1,2,3} Kentaro Teramura^{1,2,3}

The reverse water gas shift (RWGS) reaction is an important reaction for the conversion of atmospheric CO₂ into synthesis gas. Although supported metal catalysts are widely employed for the RWGS, they suffer from low selectivity to the RWGS due to sequential hydrogenation of CO to CH₄. In this study, we found that the addition of Mn to supported Pd catalysts enables the selective formation of CO. When the hydrogenation of CO₂ was carried out at 723 K over a ZrO₂-supported Pd catalyst (1.0 mol%), the RWGS and methanation proceeded to afford both CO and CH₄ with 29% and 15% yields, respectively (Figure 1). In contrast, when 1 mol% Pd and 10 mol% Mn were co-impregnated, the reaction afforded CO selectively with 45% yield. Keywords: Catalyst; Hydrogenation; Reverse water gas shift; co-loading; Metal oxide

 CO_2 から CO を得る逆水性ガスシフト反応 (RWGS) は、大気中の CO_2 を合成ガスとして資源化できる重要な反応である。RWGS には貴金属を金属酸化

物担体に担持した担持金属触媒が用いられることが多いが、生成した CO の逐次的な水素化により CH4 も生成することが問題である $^{1)}$. 本研究では、担持 Pd 触媒に Mn を添加すると、CO が選択的に生成することを見出した。723 K において ZrO_2 担持 Pd 触媒(1.0 mol%)を用いた場合、CO と CH_4 が 29% および 15% の収率でそれぞれ生成した(図 1). この触媒に 10 mol%の Mn を添加すると、CH4 の生成が抑制され、選択率ほぼ 100%で CO が得られた(収率 45%).

図1 ZrO₂担持 Pd または Pd-Mn 触媒を 用いた CO₂水素化における, 723 K での CO または CH₄収率

1) X. Wang, H. Shi, J. H. Kwak, and J. Szanyi, ACS Catal. 2015, 5, 11, 6337–6349