Photosynthesis of hydrogen peroxide by a scaled-up reactor (¹Department of Applied Chemistry, Chuo University, ²Department of Chemical and Environmental Engineering, Yale University, ³Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University) ○Zhenhua Pan,¹ Kenji Katayama,¹ Shu Hu,² Chiheng Chu³ Keywords: Photocatalyst, Hydrogen peroxide, Panel reactor Particulate photocatalysis (PC) has been widely investigated for environmentally friendly production of hydrogen peroxide (H_2O_2) . Yet, most existing PC systems for H_2O_2 generation are based on powder suspensions, which are not applicable to large-scale H_2O_2 synthesis. Consequently, the development of a scalable PC system has remained a formidable obstacle, impeding the practical implementation of H_2O_2 photosynthesis. In this study, we report a flexible photocatalyst sheet based on visible-light-responsive BiVO₄ (λ < 520 nm) for the scalable production of H₂O₂ from water and oxygen. We successfully upscaled the production by deploying BiVO₄ photocatalyst sheets in a 1-m²-flow-by reactor in a 4×4-panels array (Figure 1). The H₂O₂ synthesis on this panel reactor exhibited durability, with no loss of activity over one -month field test. To illustrate the practical utility of the photosynthesized H_2O_2 , we applied it to disinfection, achieving over 99.9% inactivation of a coronavirus surrogate within 60 minutes. Furthermore, a techno-economic analysis demonstrates the economic viability of H_2O_2 photosynthesis using the panel reactor. Our findings underscore the scalability and economic feasibility of photocatalytic H_2O_2 generation, enhancing its readiness for practical applications. Figure 1 Digital photo of the 1-m² arrayed panel flow reactor. - 1. Y. Xue, Y. Wang, Z. Pan and K. Sayama, *Angew. Chem. Int. Ed.*, **2020**, 60, 1433-7851. - 2. T. Liu, Z. Pan, K. Kato, J. J. M. Vequizo, R. Yanagi, X. Zheng, W. Yu, A. Yamakata, B. Chen, S. Hu, K. Katayama and C. Chu, *Nat. Commun.*, **2022**, 13, 7783. - 3. T. Liu, Z. Pan, J. J. M. Vequizo, K. Kato, B. Wu, A. Yamakata, K. Katayama, B. Chen, C. Chu and K. Domen, *Nat. Commun.*, **2022**, 13, 1034.