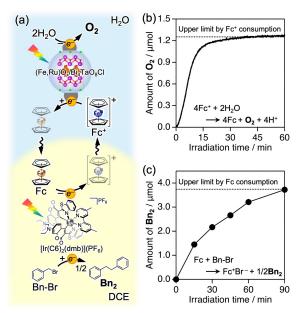
Photocatalytic System Integrated with Water Oxidation by a Liquid-Liquid Phase-Migrating Electron Mediator


(¹Grad. Sch. of Eng., Kyoto Univ., ²JSPS Research Fellow DC1, ³PRESTO/JST, ⁴Fac. of Sci. Eng., Chuo Univ.) ○Ren Itagaki,¹,² Akinobu Nakada,¹,³ Hajime Suzuki,¹ Osamu Tomita,¹ Ho-Chol Chang,⁴ Ryu Abe¹

Keywords: Photocatalyst; Separation of Reaction Fields; Electron Mediator; Photoinduced Electron Transfer; Phase Migration

Photocatalytic molecular conversions giving value added product are of great interest. Ideally, it is desirable to utilize water as an electron source for these molecular conversion reactions. Artificial Z-scheme reaction system composed of two-different photocatalysts is a potential strategy to connect various reductive molecular conversions with water oxidation, as demonstrated in overall water splitting.¹ However, it is basically difficult to perform organic molecular conversions integrated with water oxidation due to low solubility of organic reactants in water. In this study, we develop a stepwise Z-scheme photocatalytic system utilizing a water/1,2-dichloroethane (DCE) biphasic solution with a ferrocenium/ferrocene (Fc⁺/Fc) phase-migrating electron mediator to connect reductive coupling of benzyl bromide in DCE phase and water oxidation (Figure 1a).

In an aqueous solution, (Fe,Ru) O_x modified Bi₄TaO₈Cl photocatalyzed water oxidation with a Fc⁺ electron acceptor, generating O₂ and Fc (Figure 1b). On the other side, Fc can be utilized as an electron donor for photocatalytic reduction of benzyl bromide (Bn-Br) with [Ir(C6)₂(dmb)](PF₆) photoredox catalyst in a DCE phase (Figure 1c). Importantly, the latter reaction regenerated Fc⁺ which is spontaneously going back to aqueous phase.² Eventually, the Fc⁺/Fc redox couple transports an electron by the photoredox induced liquid-liquid phase migration to achieve photoreduction of Bn-Br coupled with water oxidation.

- 1) Abe, R.; Tang, J. et al. Chem. Rev. **2018**, 118, 5201.
- 2) Itagaki, R.; Takizawa, S.; Chang, H.-C.; Nakada, A. *Dalton Trans.* **2022**, *51*, 9467.

Figure 1. (a) Conceptual scheme of a biphasic photocatalysis. Time course of half reactions of (b) O₂ evolution using (Fe,Ru)O_x/Bi₄TaO₈Cl and Fc⁺ electron acceptor and (c) dibenzyl (Bn₂) formation using [Ir(C6)₂(dmb)](PF₆) and Fc electron donor.