Correlation between alkyl chain length and aggregated structures in nitrogen-doped perylene diimide analogues (¹Graduate School of Frontier Science, The University of Tokyo, ²Graduate School of Materials and Chemical Technology, Tokyo Institute of Technology, ³CREST JST) \bigcirc Ruoxi Huang^{1,2}, Craig P. Yu¹, Shohei Kumagai², Masato Mitani², Jun Takeya^{1,3}, Toshihiro Okamoto^{2,3} **Keywords**: organic semiconductor, aggregated structure, nitrogen-containing π -electron systems The aggregated structure is a crucial factor of materials properties. Recently, our group studied nitrogen-doped diimide analogues, benzo[de]isoquinolino[1,8perylene gh]quinolinetetracarboxylic diimide (BQQDI), as n-type organic semiconductors. The recent phenethyl/alkyl asymmetrically functionalized **BQQDI** $(PhC_2-BQQDI-C_n)$ has indicated that, when n = 5-7, $PhC_2-BQQDI-C_n$ can exhibit a similar brickwork packing structure to phenethyl-functionalized BQQDI (PhC2-BQQDI), one of the most promising BQQDI derivatives reported to date.² This phenomenon is attributed to a unique behavior of alkyl groups, namely, molecular mimicry, where a part of alkyl moieties adopts the gauche conformation to mimic the phenethyl counterpart.² To comprehend the intrinsic impact of alkyl chain length, in this study, symmetrically and asymmetrically functionalized BQQDI derivatives bearing alkyl substituent(s) were investigated. Symmetrically alkyl-functionalized BQQDIs (C_n–BQQDI) and PhC₂–BQQDI–C_n were synthesized at various alkyl chain lengths (n). As represent, C₅–BQQDI was found to exhibit bulk polymorphism, with both polymorphs exhibiting the *gauche* conformation, one of which is comparable to that observed in PhC₂–BQQDI–C₅. Importantly, the *gauche* conformation is important for large intermolecular orbital overlaps. In contrast, C₈–BQQDI adopts all-*anti* conformation, leading to poorer intermolecular orbital overlaps. The comprehensive discussion and comparison of the influences on solid-state properties will be given in the presentation. 1) Okamoto, T et al., Sci. Adv. **2020**, 6, eaaz0632. 2) Okamoto, T et al., Adv. Sci. **2023**, 10, 2207440.