Redox Interconversion and Reactivities of Isoindoline-Based Polyprotic Cobalt(II)/(III) Pincer Complexes (¹School of Materials and Chemical Technology, Tokyo Institute of Technology, ²College of Life Sciences, Ritsumeikan University) ○Wei-Syuan Lin,¹ Shigeki Kuwata² Keywords: Cobalt; Pincer Ligand; Pyrazole; Isoindoline; One-electron Redox Protic pyrazole has been attractive ligands in coordination chemistry owing to their proton-responsive nature.¹ Recently, our group has introduced two protic pyrazoles into diiminoisoindoline framework to synthesize a new type of pincer ligand, ^{1Bu}LH₃ (1,3-bis(5-tert-butylpyrazol-3-ylimino)isoindoline), which has a total of three ionizable NH groups. We have also isolated a series of its iron and cobalt complexes and explored their reactivity.^{2,3} In this work, we investigated the redox interconversion between cobalt(II)/(III) complexes as well as their reactivity. The reaction of [CoCl₂(IBu LH₃)] (1) with PMe₃ in a 1:2 ratio resulted in the formation of a cobalt(II) transient species, which was observed by 1 H NMR spectrum. Subsequent addition of an equimolar amount of NEt₃ and FcPF₆/KPF₆ (Fc = Cp₂Fe) afforded cobalt(II) and cobalt(III) bis(phosphine) complexes [CoCl(PMe₃)₂(IBu LH₂)]^{$^{n+}$} (n = 0 (2), 1 (3)) with a mono-deprotonated, L₂X-type ligand, respectively. The interconversion of 2 and 3 could be achieved with FcPF₆ and Cp₂Co, which highlights the one-electron redox ability of the cobalt complexes. On the other hand, addition of hydrazine to the transient species or 3 afforded the hydrazine-bridged cobalt(III) complex [Co(PMe₃)(IBu L)]₂(μ ₂-N₂H₄)₂ (4) with dissociation of a phosphine ligand. The products 1–4 were fully characterized by X-ray diffraction analysis along with ESI-MS and 1 H, 31 P NMR spectroscopy. - 1) W.-S. Lin, S. Kuwata, Molecules 2023, 28, 3529. - 2) T. Toda, S. Kuwata, Z. Anorg. Allg. Chem. 2021, 647, 1471. - 3) W.-S. Lin, S. Kuwata, The 73rd Conference of JSCC, 1Aa-01 (2023).