疎水ポケットを持つ六座配位子の二核銅錯体の合成、構造、メタン酸化 (同志社大理工) ○ 林 佑希哉・藤川 恭祐・小寺 政人

Synthesis, structure, and methane oxidation of a dicopper complex with hexadentate ligand having a hydrophobic pocket

(Molecular Chemistry and Biochemistry, Doshisha Univ) OYukiya Hayashi, Kyosuke Fujikawa, Masahito Kodera

It has been reported that copper complexes of bidentate and tridentate amine ligands react with H_2O_2 in a 2:1 ratio to form μ - η^2 : η^2 -peroxo and bis- μ -oxo dicopper complexes. However, the H_2O_2 activation by these complexes in the catalytic reactions is still unclear. We studied cyclohexane (CyH) oxidation with H_2O_2 catalyzed by monocopper complex [Cu(Medpa)(X)₂]²⁺ (1) of N-methyldi(2-piycolyl)amine (Medpa) tridentate ligand. The reaction of 1 with a large excess of H_2O_2 added at once caused Fenton type reaction to produce HO^{\bullet} , and fast CyH oxidation occured in the initial reaction, but the TON was low where HO^{\bullet} nonspecifically oxidized Medpa ligand of 1. Meanwhile, in the reaction when H_2O_2 added dividedly, μ -O $^{\bullet}$ bridged dicopper active species was mainly formed, and TON in CyH oxidation increased significantly. A dicopper complex $[Cu_2(L)(\mu$ -OH)₂]²⁺ (2) with a new hexadentate ligand L, two dpa units linked by a biphenyl group, gave large TON in CyH oxidation even when a large excess of H_2O_2 was added at once because it mainly forms a μ -O $^{\bullet}$ bridged dicopper active species but not HO^{\bullet} . In this study, a new hexadentate ligand L1 having a hydrophobic pocket as a methane binding site was synthesized. Here, we report the synthesis of L1 and its dicopper complex (3).

Keywords: *Dicopper(II) complex*; H_2O_2 *activation*; *Alkane oxidation*; *methane oxidation*