アミノ基を有するシリカを用いた低濃度 CO₂の回収

(都立大院理) 廖瀚声, 吉川聡一, 山添誠司 Capture of low concentration CO₂ by using silica with amino groups (*Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University*) Hansheng Liao, Soichi Kikkawa, Seiji Yamazoe

Direct air capture (DAC) that captures emitted low-concentration CO₂ directly from the atmosphere has achieved great attention in recent years. Solid CO₂ adsorbents, such as silica modified the surface with amines, are expected to be suitable for DAC due to their ease of recovery and regeneration, selectivity for CO₂ adsorption, and moisture resistance¹). We have previously reported the solid CO₂ adsorbents with a high density of amines that was obtained by the sol-gel synthesis of silica having organic functional group, and following modification of the surface organic functional group with diamines²). The resulting material can efficiently adsorb 400 ppm CO₂, desorb the captured CO₂ at 80°C with the absorption/desorption repeatedly out of degradation. As this method can be widely applied to compounds containing amino groups, this study examines the optimization of synthesis conditions, scale-up, and survey of types of amines modified, with the aim of developing silica materials with even greater low-concentration CO₂ adsorption performance. **Keywords**: Carbon dioxide, Low concentration, Silica gel, Amine functionalization, CO₂ Absorption/Desorption

これまでに排出された大気中の低濃度 CO_2 を直接回収する Direct Air Capture (DAC) が近年注目されている. シリカなどの表面にアミンを修飾した固体 CO_2 吸着 剤は,回収・再生が容易であり, CO_2 吸着への選択性や耐湿性があるため DAC に向けた CO_2 吸収剤として期待される 1). 我々はこれまでに,ゾルーゲル法により有機修飾シリカを合成し,表面有機鎖をジアミンで修飾することで,高密度なアミンを有する固体 CO_2 吸着剤を報告してきた 2). 得られた材料は 400 ppm の CO_2 を高効率で吸着し,回収した CO_2 を 80° C で脱離可能であり,繰り替えしの吸着・脱離に対しても劣化せず使用できる. 本手法はアミノ基を有する化合物に広く適用できるため,本研究では,本手法の合成条件最適化,スケールアップ,及び用いるアミン種を検討し,更なる低濃度 CO_2 の吸着性能を有するシリカ材料の開発を検討した.

- 1) E. S. Sanz-Perez et al., Chem. Rev. 2016, 116, 11840.
- 2) 吉川, 片岡, 山添, 第103回日本化学会春季年会, K207-3pm-05.