Electrostimuli-responsive supramolecular hydrogel cross-linked by guanine quadruplex (School of Science, The University of Tokyo) OKan Matsui, Hongyao Zhou, Teppei Yamada **Keywords**: Guanine quadruplex; Supramolecular gel; Electrochemistry; Polyethylene glycol Guanine-terminated PEG (G_2 -PEG) is known to form supramolecular hydrogels in the presence of alkali metal cations (K^+). This gelation is caused by the formation of a network structure with guanine quadruplexes as crosslinking points, which are cation-templated assembly of four guanines. Recently, we discovered that PEG chain forms the helical structure by incorporating K^+ into the helices in aqueous triiodide (I_3^-) solution. The oxygen atoms of PEG coordinate to K^+ while iodine molecule (I_2) and I_3^- are located outside the PEG helices. In this presentation, we aimed to switch the mechanical properties of G₂-PEG hydrogels by electrochemical redox reaction of KI; when iodide (I⁻) is oxidized to I₃⁻ in G₂-PEG hydrogel matrix containing KI, the PEG moiety of G2-PEG is expected to form the helical structure and coordinate to K^+ . In other words, the oxidation of I^- allows G_2 -PEG to coordinate to K^+ at two different sites—the guanine residue and the PEG chain. This conformational change in the PEG chain may result in two possible changes in the physical state of hydrogel: a) if K⁺ is lost from the G-quadruplex and bound by the PEG chain, the G2-PEG hydrogel would collapse, and the hydrogel turns into sol phase (Figure 1 (a)). b) if K⁺ remains in the G-quadruplex and PEG forms the helix at the same time, the hydrogel remains as gel phase, while its physical properties such as viscosity and elasticity may change (Figure 1 (b)). Our preliminary result showed that aqueous solution of G₂-PEG forms a viscous gel after addition KI, which is consistent with the report by Lehn et al. Further, addition of I₃ in the gel transformed the gel into dark viscous precipitate. This dark precipitate is more viscous than the precipitate formed by unmodified PEG, possibly because of the coordination of K⁺ by the G₂ terminal. More detailed studies such as the influence of molecular weight of PEG on this phase transformation upon the addition of I₃ are ongoing, and the result will be presented to elucidate the structural change of G₂-PEG. Figure 1. Structural change of G_2 -PEG after the addition of I_3^- : (a) when K^+ is lost from the G-quadruplex (b) when K^+ remains in the G-quadruplex. 1) A. Ghoussoub, J. M. Lehn, Chem. Com. 2005, 46, 5763-5765.