
Construction of a closed regular-triangle trimer of helix-linked cytochrome c_{555} using sortase A

(¹Div. Mat. Sci., NAIST, ²Medilux RC., Grad. Sch. Sci. & Tech., NAIST, ³Grad. Sch. Sci., Univ. Hyogo, ⁴Dep. Phys., Nagoya Univ., ⁵Grad. Sch. Integr. Sci. Life, Hiroshima Univ.)

Gissi Novientri,¹ Kodai Fujiwara,¹ Tsuyoshi Mashima,¹,² Naoya Kobayashi,¹ Hiroaki Matsuura,³ Hideaki Ogata,³ Takayuki Uchihashi,⁴ Sotaro Fujii,⁵ Yoshihiro Sambongi,⁵ Shun Hirota¹,²

Keywords: cyclic protein; cytochrome c_{555} ; nanoporous structure; sortase A; supramolecular protein

Protein-based supramolecules require precise arrangement of building blocks for controlling the protein assembly. The building block regular-triangle trimer $(cp-c_{555})_3$ has previously been constructed from $cp-c_{555}$, which is an α -helix-linked circular permutant of *Aquifex aeolicus* cyt c_{555} . However, $(cp-c_{555})_3$ may dissociate to monomers. To stabilize the triangle structure, a closed regular-triangle of three $cp-c_{555}$ molecules is constructed by covalently connecting terminal regions using sortase-mediated ligation (SML). Comparing SML using sortase A for six $(cp-c_{555})_3$ variants, the variant with GGG

Fig. 1. (A) Schematic representation of construction a closed regular-triangle CL-(*c*₅₅₅)₃ by SML. (B) Crystal structures of CL-(*c*₅₅₅)₃ and its nanoporous supramolecular assembly (PDB ID: 9L08).

at the N-terminus and LPETG at the C-terminus reacted most efficiently. $OP-(c_{555})_3$, a genetically connected molecule of three cp- c_{555} molecules containing the optimized sequence for SML, was designed to increase the SML product yield. $OP-(c_{555})_3$ was expressed in *E. coli* cells and the terminal regions were connected by SML, generating a closed regular-triangle $CL-(c_{555})_3$ (Fig. 1A). $CL-(c_{555})_3$ showed higher thermostability than $(cp-c_{555})_3$ and $OP-(c_{555})_3$. The structural stability of $CL-(c_{555})_3$ was confirmed by high speed-AFM observation. The crystal structure of $CL-(c_{555})_3$ revealed two stacked $CL-(c_{555})_3$ triangle molecules (Fig. 1B) with a covalent linkage across the terminal regions (red loops in Fig. 1B). Additionally, the stacked $CL-(c_{555})_3$ triangles packed into a nanoporous supramolecular structure (Fig. 1B), constructing two pores with diameters of approximately 16 and 30 Å. These results provide a method to stabilize building block proteins, enabling a unique nanoporous assembly with fixed pore sizes. By adjusting helical lengths, assemblies with tunable pore sizes may be constructed for capturing large target molecules.

[1] A. Oda, et al., Chem. Asian J. 2018, 13, 964.