Cooperative Dual Redox Sites in a Dinuclear Cobalt Complex Decrease the Overpotential of CO₂ Electroreduction (¹IMCE, Kyushu Univ., ²Grad. Sch. of Sci., Kyushu Univ., ³WPI-I²CNER, Kyushu Univ. ⁴K-NETs, Kyushu Univ., ⁵WPI-AIMR, Tohoku Univ.) ⊙Masaki Donoshita,¹.² Yunyi Pan,² Yohei Kametani,¹ Yoshihito Shiota,¹ Shu-Qi Wu,¹ Osamu Sato,¹ Miho Yamauchi¹.².3,⁴.5 Keywords: CO₂ electroreduction; dinuclear metal complex; redox; DFT calculation Electrochemical CO₂ reduction (eCO₂R), which provides valuable chemicals from CO₂ using electric power, has attracted growing attentions as a solution to the environmental and energy problems.¹ As eCO₂R catalysts, metal complexes have been widely studied because of their high designability², although the overpotential for eCO₂R is still not satisfiable. In this study, we focused on dinuclear complexes, whose multiple redox sites would be advantageous for eCO₂R involving multiple electron reductions. Inspired by the cobalt tetraphenylporphyrin (Co₁, Fig. 1 left), which is a well-studied catalyst owing to its high selectivity for CO (Faradaic efficiency; >90%),³ we targeted a dinuclear complex, [Co^{II}₂(bpypz)₂]²⁺ (Hbypz = 3,5-bis(2-pyridyl)pyrazole), which is referred to as Co₂ (Fig. 1 right). Previously, we revealed that Co₂ exhibits 250 mV more positive onset potential in *N*,*N*-dimethylformamide (DMF) solution compared to that of Co₁.⁴ In this study, we discuss their catalytic cycles based on the experimental and computational studies in order to reveal the reason for the superior catalytic performance of Co₂. Fig. 1. Molecular structures of Co₁ (left) and Co₂ (right). Chronoamperometry using a microelectrode revealed that Co_2 exhibits the one-step two-electron reduction, i.e., $(Co^{II}, Co^{II}) \rightarrow (Co^{I}, Co^{I})$, which is absent in Co_1 . This behavior affords the difference in the sequence of the electron-transfer steps and CO_2 -binding step in the catalytic cycles of Co_1 and Co_2 , which was supported by the density functional theory (DFT) calculations. We found that the simultaneous two-electron reduction before the CO_2 -binding on Co_2 circumvents the electron transfer after the CO_2 -binding which prevents the catalytic cycle of $\mathbf{Co_1}$. Furthermore, DFT calculations suggested the cooperation of the two Co ions in catalytic cycle of $\mathbf{Co_2}$, i.e., the metal-to-metal electron transfer and the intermediate with the COOH moiety bridging over the two Co sites (**Fig. 2**). We then concluded that the cooperative functions on the dinuclear complex are the key to the lower overpotential. Fig. 2. DFT-optimized structure of an intermediate for eCO₂R on Co₂. 1) R. G. Grim et al., Energy Environ. Sci. **2020**, 13, 472. 2) E. Boutin et al., Chem. Soc. Rev. **2020**, 49, 5772. 3) X. Hu et al., Angew. Chem. Int. Ed. **2017**, 56, 6468. 4) Y. Pan et al., The 104th CSJ Annual Meeting **2024**, F1232-1pm-04.