
CO₂-actuated Control of Fe(II) Spin Crossover in a Hofmann-type Metal-Organic Framework

(¹Institute for Materials Research, Tohoku University, ²Department of Chemistry, Indian Institute of Science Education and Reserach) OWataru Kosaka,¹ Abhik Paul,² Bhart Kumar,² Dibya Jyoti Mondal,² Hitoshi Miyasaka,¹ Sanjit Konar²

Keywords: Metal-Organic Framework; Spin Crossover; Gas-responsive magnetic property; Gas Adsorption; Carbon dioxide

The increased anthropogenic emission level of CO_2 urges the development of CO_2 -responsive materials, but is it possible to regulate the inherent electronic properties through weak physisorption of a ubiquitous gas such as CO_2 ? Herein, we intended to answer this imperative question by the first case of CO_2 -actuated variable spin-state stabilization in an interdigitated Hofmann-type metal-organic framework [Fe^{II}Pd(CN)₄L₂] (1, L = methyl isonicotinate) [1].

Compound 1 did not adsorb N_2 (77 K) and O_2 (90 K). In contrast, a sharp transition appeared in the CO_2 adsorption isotherm and isobar, indicating the occurrence of gated adsorption. Magnetic measurements were conducted using a home-built gas cell under an external magnetic field of 1 kOe and varied CO_2 pressure (Fig. 1a), showing a wide shift in transition temperature ($T_{1/2}$) from 178 K at $P_{CO2} = 0$ kPa to 229 K at $P_{CO2} = 100$ kPa (defined by the average of cooling and heating). Interestingly, the emergence of a stepped behavior in the heating process below $P_{CO2} = 10$ kPa and overlapping magnetic susceptibility values above $P_{CO2} = 10$ kPa elucidate the selective low-spin state stabilization correlated with the extent of CO_2 accommodation. Based on the magnetic response and phase transition diagrams obtained under respective P_{CO2} (Fig. 1b), a plausible scenario of the spin-state switching can be interpreted as $[1(ls) + 1'(ls)] \rightarrow [1(hs) + 1'(ls)] \rightarrow 1(hs)$ at $P_{CO2} \leq 10$ kPa, $P_{CO2} \leq 10$ kPa, $P_{CO2} \leq 10$ kPa, where 1 and 1' represent $P_{CO2} \leq 10$ kPa, and $P_{CO2} = 100$ kPa, where 1 and 1' represent $P_{CO2} \leq 10$ kPa, where 1 and 1' represent $P_{CO2} \leq 10$ kPa, where 1 and 1' represent $P_{CO2} \leq 10$ kPa, where 1 and 1' represent $P_{CO2} \leq 10$ kPa, where 1 and 1' represent $P_{CO2} \leq 10$ kPa, where 1 and 1' represent $P_{CO2} \leq 10$ kPa, where 1 and 1' represent $P_{CO2} \leq 10$ kPa and $P_{CO2} = 100$ kPa, where 1 and 1' represent $P_{CO2} = 100$ kPa, where 1 and 1' represent $P_{CO2} = 100$ kPa, where 1 and 1' represent $P_{CO2} = 100$ kPa and $P_{CO2} = 100$ kPa, where 1 and 1' represent $P_{CO2} = 100$ kPa and $P_{CO2} = 100$ k

Fig. 1 (a) χ*T-T* plots under CO₂ on cooling (right) and heating (right). (b) *T-P* phase diagram 1) A. Paul, W. Kosaka, B. Kumar, D. J. Mondal, H. Miyasaka, S. Konar, *Chem. Sci.* **2024**, *15*, 15610.