Quantification of the redox entropy of the second solvation shell by the guest binding to ruthenium complexes attached with aza-crown ether unit (School of Science, Department of Chemistry, the University of Tokyo) ○Itsuki Yamada, Mizuha Ujita, Kunyi Leng, Hongyao Zhou, Teppei Yamada **Keywords**: Ruthenium complex; Second solvation shell; Thermocell; Host-guest interaction; Aza-crown ether Recently, the control of second solvation shell attracts much attention because it plays an important role in catalytic reactions. In this study, we used thermocell as a novel probe to investigate the solvation behavior of the second solvation shell. The thermocell is an emerging class of a thermoelectric conversion device that harvests electricity from the temperature dependence of the redox potential of redox species. The Seebeck coefficient (S_e) is defined as the generated voltage per unit temperature difference, and is proportional to the entropy change of the redox reaction (ΔS_r). In this study, we synthesized a ruthenium complex modified with azacrown ethers, [Ru(bpy)₂(4ba15)](PF₆)₂ (1) (Fig. 1). The redox entropy of the complex with and without including guest K⁺ ions were evaluated. 1 was synthesized by stepwise reactions of Ru(1,5-cyclooctadiene)Cl₂, bpy, and 4,4'bis(aza-15-crown-5-ether)-2,2'-bipyridine. The compound was identified with ¹H NMR, MASS and elemental analysis. The encapsulation of K⁺ was confirmed by ¹H NMR titration. One ruthenium complex binds up to two K⁺ with 0.2 M KPF₆. The S_e of the ruthenium complex in acetonitrile was measured by monitoring the open circuit voltage (OCV) under elevating temperature. The evaluated S_e in TBAPF₆ was 0.85 mV K⁻¹ (Fig. 2) which is similar to that of $[Ru(bpy)_3]$ complex. The S_e with the presence of K⁺ ion of [Ru^{II/III}(bpy)₂(4ba15)](PF₆)₂ increased to ca. 0.90 mV K^{-1} . The improvement of ΔS_r could be derived from the strong solvation of K⁺ cation in aza-crown ether of 1. Figure 1. Structure of [Ru(bpy)₂(4ba15)](PF₆)₂. **Figure 2.** Temperature dependence of the OCV of Ru complex.