Circularly dichroism and circularly polarized luminescence induction behaviors of a Tb-cyclen complex supported on silica with chiral phenylethylamine ligands

(¹Dept. Chem. Grad. Sch. Sci., Nagoya Univ., ²Dept. Energy Mater. Grad. Sch. Sci. Eng., Kindai Univ., ³RCMS, Nagoya Univ.)

OSatoshi Muratsugu, 1 Sora Shirai, 1 Hidetaka Nakai, 2 Mizuki Tada 1,3

Keywords: Terbium Complex; Chirality; Chiral Ligand; Silica Surface with Chiral Ligands; Circular Dichroism; Circularly Polarized Luminescence

We investigated the preparation of new chiral molecular structures on SiO_2 surface by the attachment of a racemic and luminous Tb complex ($^{Ph}1_{Tb}$) on a SiO_2 surface modified with chiral phenylethylamine ligands ((R or S)- L_{NH2}/SiO_2), and the equilibrium of dynamic chirality of $^{Ph}1_{Tb}$ was successfully shifted on the SiO_2 surface. In this presentation, we discuss the interpretation about the major helical conformation of $^{Ph}1_{Tb}$ on (R or S)- L_{NH2}/SiO_2 , by taking the possible helical conformation of $^{Ph}1_{Tb}$ with chiral phenylethylamine ligands ((R or S)- L_{NH2}) in solution system into account.

Ph1_{Tb}/(*R* or *S*)-L_{NH2}/SiO₂ were prepared by the attachment of Ph1_{Tb} on (*R* or *S*)-L_{NH2}/SiO₂ (Figure 1), respectively. Not only solid-state circularly polarized luminescence (CPL) derived from f-f emissions of Ph1_{Tb} but also solid-state circular dichroism (CD) were observed on Ph1_{Tb}/(*R* or *S*)-L_{NH2}/SiO₂. The solid-state CD spectra of Ph1_{Tb}/(*R* or *S*)-L_{NH2}/SiO₂ showed mirror-imaged peaks in the range of 280-

Figure 1. Preparation scheme of $^{Ph}1_{Tb}/(R \text{ or } S)-L_{NH2}/SiO_2$ and their possible major helical conformations.

360 nm (**Figure 2**), suggesting the equilibrium shift of dynamic chirality of $^{Ph}1_{Tb}$ on (R or S)- L_{NH2}/SiO_2 in the ground state. The origin of CD was estimated to be derived from π - π * transition of biphenyl moiety of $^{Ph}1_{Tb}$ coordinated with (R or S)- L_{NH2} , as calculated by DFT, and the comparison of the simulated CD spectra and experimental ones suggested that the major helical conformation of $^{Ph}1_{Tb}$ on (R)- L_{NH2}/SiO_2 would be in Δ form and that of $^{Ph}1_{Tb}$ on (S)- L_{NH2}/SiO_2 would be in Δ form, respectively (**Figure 1**).

Figure 2. Solid-state CD spectra and absorption spectra (in nujol) of $^{Ph}1_{Tb}/(R)$ -L_{NH2}/SiO₂ (dashed line) and $^{Ph}1_{Tb}/(S)$ -L_{NH2}/SiO₂ (solid line).