Observation of spin-orbit splitting in gold/silver superatoms by gas-phase photoelectron spectroscopy

(Graduate School of Science, The University of Tokyo) OShun Ito, Kiichirou Koyasu, Tatsuya Tsukuda

Keywords: Cluster, metal, Superatomic orbitals, two-component density functional theory, gas-phase spectroscopy

Spin-orbit coupling (SOC) is known to play an important role in thiolate-protected gold clusters. For example, it has been theoretically predicted that superatomic 1P orbitals of [Au₂₅(SR)₁₈]⁻ (Figure 1a), in which an icosahedral Au₁₃ superatomic core is passivated by $Au_2(SR)_3$ units, are split into $1P_{1/2}$ and $1P_{3/2}$ by SOC. The purpose of this study is to reveal what structural factors cause the SO splitting of the 1P orbitals of ligand-protected Au₁₃ superatoms. To better understand the impact of gold as a heavy element, single Au atom-doped Ag clusters were studied in addition to Au clusters by anion photoelectron spectroscopy (PES)² and two-component density functional theory (2c-DFT) calculations. Specifically, we evaluated the energy levels of the 1P orbitals of $[Au_{25}(SC8)_{18}]^-$ (SC8 = SC_8H_{17} ; denoted as Au_{25}^-), $[Ag_{25}(DMBT)_{18}]^-$ (DMBT = 2,4-(CH₃)₂C₆H₃S; Ag_{25}^-), and [AuAg₂₄(DMBT)₁₈]⁻ (AuAg₂₄⁻) (Figure 1a). The SO splitting of 1P orbitals was clearly observed by using a home-built PE spectrometer equipped with a newly designed liquid nitrogen-cooled ion trap. Low temperature PES showed that the 1P orbitals of AuAg₂₄ split into two, to the same extent as those of Au_{25}^- , while those of Ag_{25}^- did not (Figure 1b). The 2c-DFT calculation well reproduced the SO splitting in the PE spectra, and the origin of the large SO splitting in AuAg₂₄ was explained by the symmetry-dictated coupling³ between triply degenerated 1P orbitals formed by the Ag₁₂ shell and an SO-split 6p orbital of the central Au atom. 2c-DFT calculation of putative regioisomers of AuAg₂₄⁻ revealed that the "central" doping of an Au atom is crucial for the SO splitting of 1P orbitals.

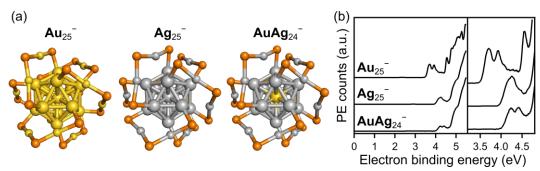


Figure 1. (a) Geometric structures and (b) low-temperature PE spectra of thiolate-protected superatoms.

1) A. Muñoz-Castro et al. *Chem. Phys. Rev.* **2023**, *4*, 021313. 2) S. Ito et al., *J. Phys. Chem. Lett.* **2022**, *13*, 5049. 3) F. Alkan et al. *J. Phys. Chem. C* **2019**, *123*, 9516.