
In situ Spectroscopic Investigation of Electrochemical CO₂ Reduction Reaction on Cu/M Surface Alloy Nanocubes (M=Pd, Pt, Ir)

(¹Research Center for Negative Emissions Technologies, Kyushu University, ²Department of Chemistry, School of Science, Kyushu University, ³Institute for Materials Chemistry and Engineering, Kyushu University, ⁴International Institute for Carbon-Neutral Energy Research, Kyushu University, ⁵Advanced Institute for Materials Research, Tohoku University)

○ Hirokazu Kobayashi,¹ Takahiro Matsuu,² Mahiru Umeno,² Sachie Hikino,¹ Tomohiro Noguchi,³ Masaki Donoshita,³ Miho Yamauchi¹,2,3,4,5

Keywords: Cu, Nanocubes, Electrochemistry, CO₂ reduction

Cu is a useful catalyst for the electrochemical reduction of CO₂ to several chemicals including CO, C₂H₄ and C₂H₅OH.¹ In order to control the product selectively on Cu, we previously prepared novel Cu/M surface alloy nanocubes (Cu/M NCs, M=Pd, Pt and Ir), and conducted electrochemical CO₂ reduction reactions (CO₂RR). While Cu NCs mainly produced ethylene, Cu/Ir NCs showed high selectivity for formic acid (Fig. 1).² Since monometallic Ir mainly produced H₂, the CO₂RR properties of Cu NCs were significantly altered by alloying with Ir. In this study, we investigated the local

Fig. 1 Faradaic efficiencies for electrochemical CO₂ reduction on Cu cubes, Cu-Pd NC, Cu-Pt NC and Cu-Ir NC.

structures and intermediates of Cu/M NCs during the reaction using in situ X-ray absorption fine structure (XAFS) and Raman spectroscopy to elucidate the reaction mechanism.

The results of in-situ XAFS measurements showed that the Cu-Ir surface alloy structure

remained stable under an applied potential of -0.6 V vs. RHE. Fig. 2 shows in situ Raman spectra of Cu NCs and Cu/Ir NCs recorded at open circuit potential (OCP) and -0.6 V, respectively. At -0.6 V for Cu NCs, peaks corresponding to CO adsorbed on Cu were detected. These peaks, observed at 280 cm⁻¹, 360 cm⁻¹, and 2042 cm⁻¹, represent the restricted rotation of adsorbed CO, Cu-CO stretching, and C-O stretching vibrations, respectively.3 These CO species serve as important intermediates in ethylene production. In contrast, no peaks associated with adsorbed CO on Cu were observed at -0.6 V for Cu/Ir NCs. This result suggests that the product pathway of Cu is modified by alloying with Ir, leading to the formation of formic acid via a mechanism that does not involve the CO intermediate on the Cu/Ir surface. The detailed mechanism is further

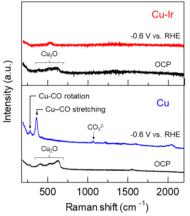


Fig. 2 In-situ Raman spectra of Cu NCs and Cu/Ir NCs recorded at OCP and -0.6 V vs. RHE under CO₂ gas flow, respectively.

analyzed in conjunction with the results of the Cu-Pt and Cu-Pd systems.

1) Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, *Electrochim Acta.*, **1994**, *39*, 1833. 2) H. Kobayashi, S. Hikino and M. Yamauchi, The 104th *CSJ Annual Meeting* **2024**, A1458-4pm-06. 3) a) C. Chunjun,, *et al*, *Chem. Sci.*, **2021**, 12, 5938. b) J. Gao, *et al. J Am Chem Soc.*, **2019**, *141*, 18704.