Cold gas-phase spectroscopy of aromatic three-membered-ring carbon and silicon compound ions: correlation between splitting of degenerate $\pi\pi^*$ transitions and excited-state structures

(¹Graduate School of Advanced Science and Engineering, Hiroshima University, ²Faculty of Science and Engineering, Kindai University) ○ Masahiro Koyama,¹ Kei Ota,² Tsukasa Matsuo,² Satoru Muramatsu,¹ Yoshiya Inokuchi¹

Keywords: Aromatic three-membered-ring compound; Gas-phase spectroscopy; Cold ion trap; Electrospray ionization; $\pi\pi^*$ transition

Hückel 2π aromaticity, found in three-membered-ring carbon/silicon cations, is characterized by a π orbital and two degenerate π^* orbitals (Fig. 1). UV-vis absorption spectrum of $(C_3Ph_3)^+$ in solution, firstly reported over 60 years ago, exhibits several broad bands (Fig. 2a). However, assignments of these bands still remain unresolved, hiding how the degenerate $\pi\pi^*$ transitions are reflected on electronic spectra. In this study, we performed ultraviolet photodissociation (UVPD) spectroscopy

of $(C_3Ph_3)^+$ isolated in a cold (~10 K) ion trap.² This study reveals the splitting of the degenerate $\pi\pi^*$ transitions in the spectrum and its correlation with the excited-state structures.

UVPD spectrum of $(C_3Ph_3)^+$, generated by electrospray ionization of bromide precursor (C_3BrPh_3) , exhibited several broad bands even under the cold gas-phase conditions (Fig. 2b). This result indicates that the broad profile is intrinsically determined by excited-state dynamics of $(C_3Ph_3)^+$. Actually, the observed band profile cannot be explained by the degenerate $\pi\pi^*$ transitions (Fig. 2c), which is predicted in the vertical transition scheme. DFT calculations suggested that the adiabatic transition energies of the two $\pi\pi^*$ states (S_1, S_2) are significantly deviated $(\Delta E > 5000 \text{ cm}^{-1}; \text{ Fig. 2d})$, well explaining the spectrum and unveiling the crucial contribution of structural relaxations on the excited-state potential surfaces. In the presentation,

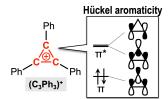



Fig. 1. Structure of target compound and π and π^* orbitals at the three-membered-ring.

Fig. 2. (a) UV spectrum of (C_3Ph_3) +BF₄-/EtOH.¹ (b) UVPD spectrum of (C_3Ph_3) +. Bar spectrum represents calculated adiabatic transition energies. (c) Kohn-Sham orbitals of $\pi\pi^*$ transitions. (d) Potential minimum structures of (C_3Ph_3) + at S₁ and S₂.

we further extend the study to other three-membered-ring carbon/silicon compound ions, $(C_3Ph_2OH)^+$ and $[Si_3(Eind)_3]^+$.

1) Breslow, R.; et al. J. Am. Chem. Soc. **1958**, 80, 5991. 2) Koyama, M.; et al. J. Phys. Chem. Lett. **2024**, 15, 1493. 3) Ohno, R.; et al. J. Am. Chem. Soc. **2024**, 146, 24911.