MgH₂の水素放出温度低下への Ni ナノ粒子担持ホウ化水素シートの寄与 (筑波大学数理物質系 ¹・産業技術総合研究所 ²・高知工科大学環境理工学群 ³・東京科学大学 MDXES ⁴・東北大学 WPI-AIMR ⁵・東北大学 IMR ⁶) 〇野口 夏未 ¹・後藤 和歩 ¹・安田 幸広 ¹・伊藤 伸一 ¹・引地 美亜 ¹・辻 流輝 ¹・大木 理 ¹・榊 浩司 ²・浅野 耕太 ²・藤田 武志 ³・細野 秀雄 ^{4,5}・折茂 慎一 ^{6,7}・近藤 剛弘 ^{1,6} Contribution of Ni nanoparticle-supported hydrogen boride sheets to lowing the hydrogen release temperature of MgH₂ (¹Institute of Pure and Applied Sciences, University of Tsukuba, ²National Institute of Advanced Industrial Science and Technology, ³School of Environmental Science and Engineering, Kochi University of Technology, ⁴MDXES, Institute of Science Tokyo, ⁵Research Center for Material Nanoarchtectonics, National Institute for Material Science, ⁶WPI-AIMR, Tohoku University, ⁷IMR, Tohoku University) Onatsumi Noguchi, ¹ Kazuho Goto, ¹ Yukihiro Yasuda, ¹ Shin-ichi Ito, ¹ Miwa Hikichi, ¹ Ryuki Tsuji, ¹ Osamu Oki, ¹ Kouji Sakaki, ² Kohta Asano, ² Takeshi Fujita, ³ Hideo Hosono, ^{4,5} Shin-ichi Orimo, ^{6,7} Takahiro Kondo ^{1,6} Hydrogen storage materials are attracting attention toward the effective use of hydrogen energy for a decarbonized society. MgH_2 , a hydride of Mg abundant in the earth, shows a high hydrogen storage capacity, but a lower hydrogen release temperature is required ¹⁾. In this study, we observed lower hydrogen release temperature of 285 °C for MgH_2 -Ni/HB, in which ball milled MgH_2 and Ni nanoparticles of ~ 2 nm in diameter ²⁾ are supported on a two-dimensional material composed of boron and hydrogen (HB sheet ³⁾). Thermodynamic evaluation, mainly differential scanning calorimetry under hydrogen pressure, suggests that Ni nanoparticles act as catalysts in the hydrogen release and absorption of MgH_2 (Fig. 1). The details will be discussed within the presentation. *Keywords: Hydrogen boride nano-sheets; Hydrogen release; Hydrogen storage;* 脱炭素社会に向けた水素エネルギーの有効利用に向け、水素吸蔵材料が注目されている。地球上に豊富な Mg の水素化物である MgH_2 は高い水素吸蔵量を示す一方、水素放出温度の低温化が求められている $^{1)}$ 。本研究ではホウ素と水素からなる二次元物質 (HB^3))に粒径約 $2 \, nm$ の Ni ナノ粒子 $^{2)}$ と MgH_2 を担持し、ボールミルで微細化した。昇温脱離により水素放出開始温度が $285\,^{\circ}$ Cまで低温化することが示された。また、水 素圧力下での示差走査熱量測定等から、Ni ナノ粒子が MgH_2 の水素放出・吸蔵における触媒として働いていることが示唆された(Fig. 1)。発表ではその詳細について議論する。 (1) Wen, Z. et al. ACS Appl. Mater. Inter. 2020, 12, 50333. (2) Noguchi, N. et al. Molecules 2022, 27, 8261. (3) Nishino, H. et al. J. Am. Chem. Soc. 2017, 139, 13761. Fig. 1 Energy diagram for H₂ desorption in MgH₂-Ni/HB