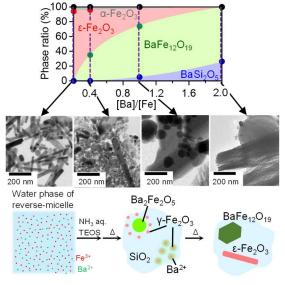
Phase Separation of Epsilon Iron Oxide and Barium Ferrite using a Reverse-Micelle and Sol-Gel Combined Synthesis


(¹Graduate School of Science, The University of Tokyo, ² Graduate School of Science, The University of Tsukuba) ○Jessica Grace MacDougall,¹ Hiroko Tokoro,² Marie Yoshikiyo,¹ Asuka Namai,¹ Shin-ichi Ohkoshi¹

Keywords: Barium ferrite; Epsilon iron oxide; Hard ferrite; Nanoparticles; Phase diagrams.

Hard magnetic ferrites, epsilon iron oxide (ϵ -Fe₂O₃) and barium ferrite (BaFe₁₂O₁₉) are of significant interest due to their magnetic properties and potential applications in magnetic recording media and millimetre-wave absorption. This study investigates the effect of barium ion (Ba²⁺) to iron ion (Fe³⁺) ratio on the synthesis of ϵ -Fe₂O₃ and BaFe₁₂O₁₉ using a combined reverse-micelle and sol-gel technique.^{1,2} Reverse-micelle solutions were prepared containing Fe(NO₃)₃ and varying concentrations of Ba(NO₃)₂ (solution A), or ammonium hydroxide (solution B). Solution B was added dropwise into solution A, followed by tetraethyl orthosilicate and stirring, yielding a precipitate that was collected, annealed at 1000°C, and etched with NaOH (aq) and HCl (aq) to remove the silica matrix. By varying the Ba/Fe molar ratio, distinct phase separations and morphological changes were observed. At low Ba ion concentrations ([Ba]/[Fe] = 0.2), ϵ -Fe₂O₃ nanorods form predominantly, whereas higher Ba concentrations ([Ba]/[Fe] \geq 0.4) favour the formation of BaFe₁₂O₁₉, shown by microscopy and powder X-ray diffraction (PXRD). At an equimolar ratio ([Ba]/[Fe] = 1), ϵ -Fe₂O₃ and BaFe₁₂O₁₉ coexist in equal proportions, with no intermediate phases. Magnetic behaviour shows reduced coercive field and increased magnetic saturation as the major phase shifts from ϵ -Fe₂O₃ to

BaFe₁₂O₁₉ as the Ba ion ratio is increased.

Based on the analysis conducted using scanning transmission electron microscopy coupled with energy dispersive X-ray spectroscopy and PXRD, the following mechanism is proposed for the sintering process: At 1000 °C, in areas of high barium ion concentration, γ-Fe₂O₃ nanoparticles interact with Ba₂Fe₂O₅ to form BaFe₁₂O₁₉. Conversely, in areas of low barium ion concentration, γ-Fe₂O₃ nanoparticles undergo transformation into ε-Fe₂O₃ nanorods. This study clarifies the influence of the Ba/Fe ion ratio on this synthesis, facilitating the targeted

production of ferrite materials for advanced magnetic and technological applications.

1) J. MacDougall, H. Tokoro, M. Yoshikiyo, A. Namai, S. Ohkoshi, *Eur. J. Inorg. Chem.*, **2024**, *27*, e202400148. 2) J. Jin, S. Ohkoshi, K. Hashimoto, *Adv. Mater.* **2004**, *16*, 48.