
Conductive and Mechanically Robust Composites based on Self-Healing Glassy Polymers

(¹The University of Tokyo, ²Riken CEMS) OKAIYUAN HE, ¹ Takuzo Aida, ^{1,2} **Keywords**: Self-Healing; Carbon Nanotubes; Polymer Composites; Conductive Composites; Polymer Glass

With the growing demand for electronics that can withstand harsh environments, creating materials that prevent device failure is more important than ever. Developing stronger materials or incorporating self-healing properties are promising approaches. However, combining both robustness and self-healing capabilities in a conductive material remains a significant challenge.

In this presentation, we introduce a novel composite that integrates carbon nanotubes (CNTs) into a self-healing glassy polymer, poly(ether thiourea) (TUEG₃), originally developed by Aida Lab in 2018¹. This composite not only demonstrates exceptional mechanical strength and high conductivity but also retains its self-healing ability at room temperature. Remarkably, it can recover its conductivity after being damaged, offering exciting possibilities for advanced electronics in challenging conditions.

1) Yanagisawa, Y.; Nan, Y.; Okuro, K.; Aida, T. Science 2018, 359, 72.