ギ酸による水素の貯蔵と再生 ~CO2水素化とギ酸脱水素反応~

(筑波大院理¹・産総研²) ○大野 聖海 ^{1,2}・兼賀 量一²・川波 肇 ^{1,2}

Hydrogen Storage and Regeneration via Formic Acid ~CO₂ hydrogenation and Formic Acid Dehydrogenation~ (¹Graduate School of Science and Technology, University of Tsukuba, ²National Institute of Advanced Industrial Science and Technology) ○Seo Ono,¹,² Ryoichi Kanega,² Hajime Kawanami ¹,²

Formic acid can store up to 590 L of hydrogen (H₂) per liter, making it a promising hydrogen carrier. However, its use is accompanied by the simultaneous emission of carbon dioxide (CO₂) with H₂, necessitating the utilization of CO₂. The conversion of CO₂ to formic acid has been widely studied under basic conditions, with homogeneous catalysts based on precious metals such as Ir and Ru exhibiting high activity in converting CO₂ to "formate salts". However, to recover H₂, the formate salts must be further converted into formic acid.

In this study, a developed a straightforward process for extracting formic acid from formate derived from CO₂. Under high-pressure and basic conditions, CO₂ hydrogenation catalyzed by Ir complex generated up to 0.8 M formate. Formic acid was subsequently extracted from the formate using ion-exchange resins, and the regeneration of H₂ from the extracted formic acid was demonstrated using the Ir complex. The overall reaction efficiency exceeded 90.0%, successfully validating the concept of H₂ storage and regeneration via formic acid as a hydrogen carrier.

Keywords: Hydrogen; Formic acid; Carbon dioxide; Iridium complex

ギ酸は 1L で水素 (H_2) を 590L 貯蔵可能であるため、水素キャリアとして有用である。しかし、 H_2 と同時に二酸化炭素 (CO_2) も排出されるため、 CO_2 の利用が求められる。 CO_2 のギ酸への変換は、塩基条件下での水素化が多く研究されており、Ir や Ru などの貴金属系均一錯体が高い活性で CO_2 から "ギ酸塩" へと変換する。 1 しかし、 H_2 を得るためには "ギ酸塩" をギ酸に変換する必要がある。そこで、本研究では、ギ酸を CO_2 から得られたギ酸塩を簡便な方法で抽出するプロセスを開発した。高圧・塩基条件下で、Ir 錯体を触媒とした CO_2 水素化により、最大 0.8 M の高い濃度のギ酸塩を生成し、 H_2 を貯蔵した。得られたギ酸塩からイオン交換樹脂でギ酸へと変換し、Ir 錯体触媒によりギ酸から H_2 を再生する検討を行った。結果、総反応効率は 90.0 %を超え、水素キャリアであるギ酸を介した H_2 の貯蔵と再生の概念実証に成功した。

Scheme 1 CO₂ とギ酸を介した水素の貯蔵と再生プロセス

1) S. Chatterjee et al., Energy Environ. Sci., 2021, 14, 1194-1246.