シリコン表面における CO2 還元反応の理論的解析及びその実験的 検証 (早大院理工)○幸田怜・山口勉功・国吉ニルソン Theoretical analysis and experimental verification of CO₂ reduction reaction over silicon surfaces (*Sch. Sci. Eng., Waseda University*) \bigcirc Rei Kouda, Katsunori Yamaguchi, Nilson Kunioshi CO₂ is one of the greenhouse gases and is considered a cause of global warming. To control global warming, technologies to reduce CO₂ and convert it into a resource are attracting attention. Today, catalysts for CO₂ reduction are being explored, but there are cost issues, such as the use of noble metals. Therefore, we focused on high purity silicon, which is generated from single-crystal silicon production and waste solar panels, as a new catalyst. To evaluate the catalytic performance of silicon, we analyzed the CO₂ reduction reaction on clean Si(100) surfaces and oxidized silicon surfaces using Gaussian 16. As a result, it was confirmed that H₂ reacts with CO₂ to produce CO and HCOOH. In addition, experiments were conducted in which CO₂ and H₂ were poured onto actual Si(100) wafers and silicon sludge in an electric furnace to verify the reactions confirmed by quantum chemical calculations. Keywords: Quantum chemical calculation; carbon recycle; reaction dynamics CO_2 は温室効果ガスの一つであり、地球温暖化の原因とされている。地球温暖化の対策として CO_2 を還元し、資源化する技術が注目を集めている。現在 CO_2 還元のための触媒探索が盛んになされているが、貴金属を使用するなどのコスト面の問題がある。そこで、我々は新たな触媒の材料として単結晶シリコンの製造時や廃太陽光パネルなどから排出される高純度 Si に着目した。 シリコンの触媒性能を評価するため、Gaussian16 を用いて清浄 Si(100)面や酸化されたシリコン表面において CO_2 の還元反応の解析を行った。その結果、 H_2 と CO_2 が反応し、COや HCOOH が生成することが確認された。また、電気炉において実際のSi(100)ウエハー、シリコンスラッジに CO_2 、 H_2 を流す実験を実施し、量子化学計算で確認された反応の検証を試みた。