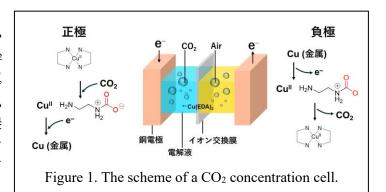
CO2濃淡電池


(東大院理)○山田 鉄兵・柿澤 彩花・若山 悠有佑・杉山 高康・伊東 みのり・米川 真由・Kunyi Leng・周 泓遥

A CO₂ Concentration Cell (Department of Chemistry, The University of Tokyo), ○Teppei Yamada Ayaka Kakizawa, Yusuke Wakayama, Takayasu Sugiyama, Minori Ito, Mayu Yonekawa, Kunyi Leng, Hongyao Zhou

Waste gas through the burning of fossil fuels contains 10% to 20% of the CO₂ and its release to atmosphere with low CO₂ concentrations dissipates Gibbs free energy. We propose an electrochemical system, a CO₂ concentration cell, which converts the Gibbs energy derived from this CO₂ concentration difference into electric energy. The scheme of the CO₂ concentration cell is shown in Fig. 1. It is composed of a copper electrode and aqueous solutions of ethylenediamine (EDA) and copper nitrate. The cell has three equilibria: CO₂ adsorption by EDA, coordination of EDA to copper ions and redox reactions of the copper electrode. The first equilibrium shifts by the difference in CO₂ concentration between the two electrodes, which causes the shift of redox potential of copper. CO₂ and nitrogen gases were introduced into a couple of separate electrolytes, and a voltage of up to 300 mV was obtained. The formation of carbamate by the reaction of EDA and CO₂ and the resultant formation of copper aqua complex were confirmed by spectroscopic method. In addition, a solution-type CO₂ concentration cell was also achieved by using N,N'-bis(2-aminoethyl)-4,4'-bipyridine.

Keywords : A CO₂ Concentration Cell; Cu(en)₂; bis(2-aminoethyl-4,4'-bipyridine)

化石資源の燃焼により CO₂ を排出する過程において、10%~20%の濃度の CO₂ を低濃度の大気へと放出しており、濃度差に基づくギブスエネルギーを散逸している。本発表ではこの CO₂の濃度差に由来するギブスエネルギーを電気エネルギーに変換する電気化学システム、CO₂濃淡電池を提案する。

 CO_2 濃淡電池の概要を図 1 に示す。本電池は銅電極と、エチレンジアミン(EDA) および硝酸銅の水溶液から構成される。電池内には EDA の CO_2 吸着、銅イオンと EDA の配位および銅電極の酸化還元反応の 3 つの平衡が連動している。両電極間の CO_2 濃度の差によって平衡がシフトし、電気エネルギーを得る。実際に両極に CO_2 および窒素を吹き込んだ電解液を導入すると、最大で $300\,\mathrm{mV}$ の電圧が得られた。また CO_2 の導入に伴い、EDA のカーバメートへの反応と、銅アクア錯体の生成が確認された。さらに、N,N'-ビス(2-アミノエチル)-4,4' ビピリジンを合成し、電解液に用いることで、溶液型 CO_2 濃淡電池も作成したので合わせて報告する。