錯体重合法およびフラックス処理により調製した 700 nm までの可視光を利用できる Ru ドーピング SrTiO3 単一粒子型光触媒を用いた水分解 (東理大理 1 ・東理大総研カーボンバリュー 2) 〇花房 ちさと 1 ・山口 友一 1,2 ・工藤 昭彦 1,2 Water Splitting over Ru-Doped SrTiO₃ Prepared by a Polymerizable Complex Method and a Flux Treatment as a Single Particulate Photocatalyst Utilizing Visible Light up to 700 nm (¹Faculty of Science, Tokyo University of Science, ²Carbon Value Research Center, Research Institute for Science and Technology, Tokyo University of Science) ○ Chisato Hanafusa, ¹ Yuichi Yamaguchi, ^{1,2} Akihiko Kudo^{1,2} We have reported that a photocatalytic water splitting activity under visible light over Rudoped SrTiO₃ extensively enhanced by the SrCl₂-flux treatment^{1,2)} and loading CrO_x/Rh and CoOOH cocatalysts by the photodeposition method^{2,3)} which is necessary for preparation of SrTiO₃:Al with high apparent quantum yield and doping a small amount of Ru. ⁴⁾ However, the activity is low at the present stage. In the present study, we investigated the effect of co-doping on water splitting under visible light irradiation over a Ru-doped SrTiO₃ photocatalyst. The diffuse reflectance spectra of the prepared photocatalysts suggested that the Ru ions were controlled to Ru³+ ions by Sb, Nb, and Ta co-doping. Additionally, the 0.03% of Sb co-doped sample showed the efficient water splitting activity under visible light irradiation in comparison with the Ru-doped sample. The optimized photocatalyst responded to 700 nm and the apparent quantum yield reached 1.8% at 420 nm. Keywords: Water splitting; Metal oxide; Doping Ru; Visible light; Green hydrogen production 当研究室ではこれまでに、高い量子収率を示す $SrTiO_3$:Al の調製に必要な $SrCl_2$ フラックス処理 $^{1,2)}$ 、光電着法による CrO_x /Rh 助触媒と CoOOH 助触媒の共担持 $^{2,3)}$ に加え、Ru 微量ドーピングにより単一粒子型可視光水分解に活性な Ru ドーピング $SrTiO_3$ 光触媒を開発してきた $^{4)}$. しかしその活性は未だ低く、社会実装に向けさらなる高活性化が望まれる。そこで本研究では、錯体重合法およびフラックス処理によって調製した Ru ドーピング $SrTiO_3$ 光触媒による可視光水分解の高活性化を目的として、共ドーピング効果を調べた。 光触媒の拡散反射スペクトルより、Sb や Nb, Ta の共ドーピングによって Ru イオンが 3 価に価数制御されたことが示唆された. そして、本光触媒は可視光照射下における水分解において Ru 単独ドープ体よりも高い活性を示し、特に Sb を 0.03%共ドープしたときに最も高い水分解活性を示した. 本光触媒は 700 nm までの光に応答して水を分解し、420 nm における外部量子収率 (AQY) は 1.8%に達した. - 1) H. Kato, M. Kobayashi, M. Hara, M. Kakihana, Catal. Sci. Technol. 2013, 3, 1733. - 2) T. Takata, K. Domen et al., Nature 2020, 581, 411. - 3) K. Maeda, K. Domen et al., Nature 2006, 440, 295. - 4) K. Kaiya, A. Kudo et al., Chem. Sci. 2024, 15, 16025.