ロジウム/キラルジェン触媒を用いたアリールホウ素化合物のグリカール誘導体への立体選択的 1,4-付加反応

(阪公大院理) ○高橋 明雅・西村 貴洋

Rhodium/Chiral Diene-Catalyzed Stereoselective 1,4-Addition of Arylboron Compounds to Glycals Derivatives (*Graduate School of Science, Osaka Metropolitan University*) \bigcirc Akimasa Takahashi, Takahiro Nishimura

C-Glycosyl arenes refer to sugar derivatives, whose sugar moiety is connected to an aromatic ring at the anomeric position via a stable carbon-carbon bond, and the structural motif is important in organic chemistry, medicinal chemistry, and natural product synthesis. Two isomers, α - and β -forms, are available for the C-glycosyl arenes based on the stereoconfiguration at the anomeric position. There have been several reports on the stereoselective synthesis of α -C-glycosyl arenes based on the substrate specificity from glycals, which have a characteristic C-C double bond between C1 and C2 in their cyclic form. In contrast, direct transformation of glycals into β -C-glycosyl arenes is quite limited. Here we report rhodium/chiral diene-catalyzed stereoselective 1,4-addition of arylboron compounds to glycals derivatives. We succeeded in the synthesis of the β -C-glycosyl arenes by use of the chiral diene ligand having an appropriate absolute configuration.

Keywords: Rhodium; 1,4-Addition; Glycal

C-グリコシルアレーンは、糖部分が安定な炭素-炭素結合によってアノマー位で芳香環に結合した糖誘導体であり、その構造モチーフは有機化学、医薬化学、天然物合成において重要である。C-グリコシルアレーンには、アノマー位の立体配座に基づく α 体と β 体の 2 つの異性体が存在する。 α -C-グリコシルアレーンの合成については、C1-C2 間に炭素-炭素二重結合を持つ不飽和糖であるグリカールから、その基質特異性に基づく立体選択的合成の報告がいくつかある。一方、グリカールから β -C-グリコシルアレーンへの直接変換は極めて限られている。本講演では、ロジウム/キラルジエン触媒を用いたアリールボロン化合物のグリカール誘導体への立体選択的 1,4-付加反応についてのべる。適切な絶対配置を持つキラルジエン配位子を用いることで、様々なアリール基を持つ β -C-グリコシルアレーンの合成に成功した。

AcO
$$(PhBO)_3$$

$$\frac{[Rh(OH)((S,S)-Fc-tfb^*)]_2 (5 \text{ mol}\% \text{ Rh})}{CH_2Cl_2 / MeOH (1:1)}$$

$$30 \text{ °C, 3 h}$$

$$R = \text{ferrocenyl}$$

$$R = \text{Fc-tfb}^*$$