高い対称性をもつ有機二核ホウ素錯体の結晶構造と蛍光特性

(阪公大工 ¹・阪公大院工 ²・阪公大 RIMED³) 〇福田 侑真 ¹・大垣 拓也 ².³・松本 楓子 ²・松井 康哲 ².³・池田 浩 ².³

Crystal Structures and Fluorescence Properties of Organic Binuclear Boron Complexes with High Symmetry (¹Sch. of Eng., Osaka Metro. Univ., ²Grad. Sch. of Eng., Osaka Metro. Univ., ³RIMED, Osaka Metro. Univ.) OYuma Fukuda, ¹ Takuya Ogaki, ^{2,3} Fuko Matsumoto, ² Yasunori Matsui, ^{2,3} Hiroshi Ikeda^{2,3}

We previously reported that the crystals of organoboron complexes 1-R (Fig. 1) exhibit "excited multimer luminescence". In this work, we synthesized new organic binuclear boron complexes 2-R (Fig. 1) with higher molecular symmetry and investigated their crystal structures and fluorescence properties. X-ray crystallographic analysis revealed that a 2-m-Me molecule has a completely planar π -framework (Fig 2a). In addition, 2-m-Me molecules are arranged with π -stacking of crystallographically-equivalent adjacent four molecules and finally form an "isotropic brickwork structure" (Fig. 2b). Furthermore, 2-m-Me in the crystalline state exhibited yellow fluorescence with a wavelength of 545 nm, which is longer than that (460 nm) of the blue fluorescence of the mononuclear complex 1-m-Me. In the presentation, we will also give the details of the crystal structures and fluorescence properties of other derivatives.

Keywords: Organoboron Complex; Organic Crystal; Fluorescence; X-ray Crystallographic Analysis; Symmetry

我々は以前,有機ホウ素錯体 1-R (Fig. 1)の結晶において,三分子以上が関与した励起子に由来する"励起マルチマー発光"発現のためには,高い分子対称性が重要であることを明らかにした ^{1,2}. 本研究では,より高い分子対称性を有する新規有機二核ホウ素錯体 2-R (Fig. 1)を合成し,その結晶構造および蛍光特性を調べた.

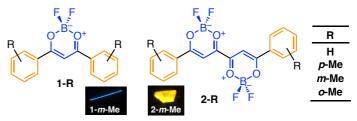
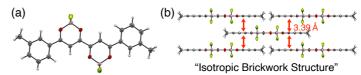



Fig. 1. Molecular structures of 1-R and 2-R with photographs of fluorescence of 1-m-Me and 2-m-Me crystals under 365-nm light.

Fig. 2. (a) The molecular geometry and (b) the packing structure of **2-***m***-Me** determined by X-ray crystallographic analysis.

X 線結晶構造解析の結果, **2-m-Me** の π 骨格は完全平面構造であることがわかった (Fig. 2a). また, **2-m-Me** の分子は結晶学的に等価な隣接四分子と面間距離 3.39 Å で π 積層をした "等方的ブリックワーク構造" を形成していた (Fig. 2b). さらに, **2-m-Me** は結晶状態で黄色蛍光を示し, その波長の 545 nm は単核錯体 **1-m-Me** の青色蛍光 460 nm より長波長であった. 発表では, 他の誘導体の結果についても議論する.

- 1) Sakai, A.; Tanaka, M.; Matsui, Y.; Ikeda, H. et al. Chem. Eur. J. 2015, 21, 18128–18137.
- 2) 松本,池田ら, 日本化学会第104 春季年会(2024) 講演予稿集, P2-3am-25, 2024.