## 球状錯体への包接によるアミロイドβ疎水性断片の二量体の構造解析

(東大院工  $^{1}$ ・分子研  $^{2}$ ・東大国際高等研  $^{3}$ ) ○小野寺悠太  $^{1}$ ・中間貴寛  $^{1}$ ・矢木真穂  $^{2}$ ・加藤晃一  $^{2}$ ・藤田誠  $^{1,2,3}$ 

Structural Analysis of Amyloid β Hydrophobic Fragment Dimers by Encapsulation in a Spherical Coordination Cage (<sup>1</sup>Graduate School of Engineering, the University of Tokyo, <sup>2</sup>Institute for Molecular Science, <sup>3</sup>UTIAS, The University of Tokyo) OYuta Onodera, <sup>1</sup> Takahiro Nakama, <sup>1</sup> Maho Yagi-Utsumi, <sup>2</sup> Koichi Kato, <sup>2</sup> Makoto Fujita<sup>1,2,3</sup>

The structural analysis of initial aggregates of amyloid  $\beta$  (A $\beta$ ) proteins, which have been presumed to be highly neurotoxic in Alzheimer's disease, is challenging due to their transient and heterogeneous nature. M<sub>12</sub>L<sub>24</sub> spherical complexes, self-assembled from bis(pyridine) ligands (L) and Pd<sup>2+</sup> ions (M), can prevent the aggregation of a protein by isolating it within the cavity, thus allowing for the analysis of the denatured transient structures.<sup>1,2)</sup> In this study, we report structural analysis of a dimer of A $\beta$  hydrophobic fragments by encapsulation in M<sub>12</sub>L<sub>24</sub> cages (**Fig. 1**). Two <sup>13</sup>C, <sup>15</sup>N-isotope-labeled A $\beta$ <sub>16-23</sub> (KLVFFAED) were conjugated with bis(pyridine) and encapsulated in the cage. NMR spectroscopy indicated that the A $\beta$ <sub>16-23</sub> peptides in the cage were selectively dimerized by suppressing their random aggregation. 2D and 3D NMR analysis revealed a  $\beta$ -sheet association structure of A $\beta$ <sub>16-23</sub> in aqueous media. Intermolecular NOE indicated the proximity of side chains between two peptide chains.

Keywords: Amyloid  $\beta$ ; Protein encapsulation; Self-assembly; Alzheimer's disease; NMR structural analysis

アルツハイマー病において高い神経毒性を持つとされるアミロイド  $\beta$  (A $\beta$ )タンパク質の初期会合体は、過渡的で不均一であるため、その構造解析は困難である。ビスピリジン配位子(L)と  $Pd^{2+}$ イオン(M)の自己集合で形成される  $M_{12}L_{24}$  球状錯体は、包接したタンパク質の凝集を防ぎ、その変性過渡構造を単離・解析することができる  $^{1,2}$ )。本研究では、球状錯体への包接により  $A\beta$  疎水性断片の二量体の構造解析を行った(Fig. 1)。  $^{13}$ C,  $^{15}$ N 同位体標識  $A\beta_{16-23}$  (KLVFFAED)を 2 つ縮合させた配位子を合成し、2 分子の  $A\beta_{16-23}$  を球状錯体へ包接した。 $A\beta$  断片の無秩序な凝集を抑制することで、その選択的な二量化を NMR で観測することができた。2 次元・3 次元 NMR による解析の結果、水性条件で錯体内の  $A\beta_{16-23}$  が  $\beta$  シート性の会合構造をとることが示唆された。さらに NOESY NMR 解析により、ペプチド鎖間の側鎖の近接が示された。本発表では、錯体内に単離された  $A\beta_{16-23}$  の会合構造について議論する。



**Fig. 1** Isolation of Aβ hydrophobic fragments by encapsulation in a self-assembled M<sub>12</sub>L<sub>24</sub> spherical complex. 1) R. Ebihara, *et al.*, *Angew. Chem. Int. Ed. Accepted*, e202419476. 2) T. Nakama, *et al.*, *Chem. Sci.* **2023**, *14*, 2910.