球状錯体への包接によるアミロイドβ疎水性断片の二量体の構造解析 (東大院工 1 ・分子研 2 ・東大国際高等研 3) ○小野寺悠太 1 ・中間貴寛 1 ・矢木真穂 2 ・加藤晃一 2 ・藤田誠 1,2,3 Structural Analysis of Amyloid β Hydrophobic Fragment Dimers by Encapsulation in a Spherical Coordination Cage (¹Graduate School of Engineering, the University of Tokyo, ²Institute for Molecular Science, ³UTIAS, The University of Tokyo) OYuta Onodera, ¹ Takahiro Nakama, ¹ Maho Yagi-Utsumi, ² Koichi Kato, ² Makoto Fujita^{1,2,3} The structural analysis of initial aggregates of amyloid β (A β) proteins, which have been presumed to be highly neurotoxic in Alzheimer's disease, is challenging due to their transient and heterogeneous nature. M₁₂L₂₄ spherical complexes, self-assembled from bis(pyridine) ligands (L) and Pd²⁺ ions (M), can prevent the aggregation of a protein by isolating it within the cavity, thus allowing for the analysis of the denatured transient structures.^{1,2)} In this study, we report structural analysis of a dimer of A β hydrophobic fragments by encapsulation in M₁₂L₂₄ cages (**Fig. 1**). Two ¹³C, ¹⁵N-isotope-labeled A β ₁₆₋₂₃ (KLVFFAED) were conjugated with bis(pyridine) and encapsulated in the cage. NMR spectroscopy indicated that the A β ₁₆₋₂₃ peptides in the cage were selectively dimerized by suppressing their random aggregation. 2D and 3D NMR analysis revealed a β -sheet association structure of A β ₁₆₋₂₃ in aqueous media. Intermolecular NOE indicated the proximity of side chains between two peptide chains. Keywords: Amyloid β ; Protein encapsulation; Self-assembly; Alzheimer's disease; NMR structural analysis アルツハイマー病において高い神経毒性を持つとされるアミロイド β (A β)タンパク質の初期会合体は、過渡的で不均一であるため、その構造解析は困難である。ビスピリジン配位子(L)と Pd^{2+} イオン(M)の自己集合で形成される $M_{12}L_{24}$ 球状錯体は、包接したタンパク質の凝集を防ぎ、その変性過渡構造を単離・解析することができる 1,2)。本研究では、球状錯体への包接により $A\beta$ 疎水性断片の二量体の構造解析を行った(Fig. 1)。 13 C, 15 N 同位体標識 $A\beta_{16-23}$ (KLVFFAED)を 2 つ縮合させた配位子を合成し、2 分子の $A\beta_{16-23}$ を球状錯体へ包接した。 $A\beta$ 断片の無秩序な凝集を抑制することで、その選択的な二量化を NMR で観測することができた。2 次元・3 次元 NMR による解析の結果、水性条件で錯体内の $A\beta_{16-23}$ が β シート性の会合構造をとることが示唆された。さらに NOESY NMR 解析により、ペプチド鎖間の側鎖の近接が示された。本発表では、錯体内に単離された $A\beta_{16-23}$ の会合構造について議論する。 **Fig. 1** Isolation of Aβ hydrophobic fragments by encapsulation in a self-assembled M₁₂L₂₄ spherical complex. 1) R. Ebihara, *et al.*, *Angew. Chem. Int. Ed. Accepted*, e202419476. 2) T. Nakama, *et al.*, *Chem. Sci.* **2023**, *14*, 2910.