外周部にアニリン部位を有するサドル型歪曲ポルフィリンによる ソルバトクロミズム特性 (筑波大数物)○田中陽・石塚智也・小谷弘明・小島隆彦 Solvatochromism of saddle-distorted porphyrins bearing aniline moieties at the periphery (*Graduate School of Pure and Applied Sciences, University of Tsukuba*) OHiro Tanaka, Tomoya Ishizuka, Hiroaki Kotani, Takahiko Kojima The solvatochromism of porphyrins reported so far is based on the coordination of a solvent molecule at the axial position of the metal center¹ or the impact of solvent on the charge-transfer character in the excited state.² In this work, we have employed a saddle-distorted dodecaphenylporphyrin (H₂DPP) derivative with an amino group to the *p*-position of one of the *meso*-aryl groups (H₂DPPNH₂) and have investigated the solvatochromism of saddle-distorted H₂DPP and H₂DPPNH₂ in different solvents. The Soret bands of H₂DPP and H₂DPPNH₂ were observed at 468 and 475 nm in CH₂Cl₂, and at 486 and 499 nm in DMSO, respectively. Thus, we concluded that H₂DPPNH₂ shows larger red shifts due to the solvent polarity-based solvatochromism than H₂DPP. Herein, we will report the plausible origins of the solvatochromism as revealed by the correlation of the wavelengths of the absorption bands with the various solvent parameters and results of TD-DFT calculations. Keywords: Porphyrin; charge transfer; solvatochromism; saddle distortion; HOMO-LUMO gap ポルフィリンのソルバトクロミズムは、その中心金属の軸位への溶媒の配位に基づくもの¹と、その励起状態の電荷移動性に基づくもの²が報告されている。一方、サドル型に歪んだポルフィリンについては、その中心金属の軸位への溶媒の配位に基づくもの³のみが報告されている。本研究 図 1. a) H₂DPP と b) H₂DPPNH₂の構造. では、サドル型に歪んだドデカフェニルポルフィリン(H_2DPP ; 図 1a)と、その1つのメソ位アリール基のパラ位にアミノ基を導入した誘導体(H_2DPPNH_2 ; 図 1b)について、複数の溶媒を用いてソルバトクロミズムを検討した。その結果、 H_2DPP では、 CH_2Cl_2 中で 468 nm に観測された Soret 帯の吸収極大が、DMSO 中では 486 nm に長波長シフトし、 H_2DPPNH_2 では、 CH_2Cl_2 中で 475 nm に観測された Soret 帯の吸収極大が、DMSO中では 499 nm に長波長シフトした。この結果から、 H_2DPP よりも H_2DPPNH_2 の方が、溶媒の極性に依存して大きな長波長シフトを示すことが分かった。本研究では、溶媒の極性に基づく各種パラメーターに対するプロットや TD-DFT 計算を通じて、このソルバトクロミズムの起源を検討したので報告する。 1) Y. A. Son and co-workers, *Inorg. Chim. Acta* **2018**, 469, 453. 2) S. M. B. Costa and co-workers, *J. Phys. Chem. B* **2013**, 117, 15023. 3) T. Kojima and co-workers, *J. Porphyrins Phthalocyanines* **2024**, 28, 151.