出芽酵母に対する低重合度ポリ(ε-L-リシン)の抗真菌作用機構の解析 (滋賀県大工 1 ・京大院農 2) ○竹原 宗範 1 ・谷村 雨音 1 ・田中 航輝 1 ・新本 晶 1 ・井上 善晴 2 Investigation on Mechanism of Antifungal Activity of Short Chain Length Poly(ε-L-lysine) against Saccharomyces cerevisiae (¹School of Engineering, The University of Shiga Prefecture, ²Graduate School of Agriculture, Kyoto University) Munenori Takehara,¹ Amane Tanimura,¹ Koki Tanaka,¹ Akira Aramoto,¹ Yoshiharu Inoue² Poly(ε-L-lysine) (ε-PL), produced by some strains of *Streptomyces* spp., is a cationic polypeptide with a broad antimicrobial spectrum. ε-PL with short chain length (S-ε-PL) shows higher antifungal activity against *Saccharomyces cerevisiae* compared to medium chain length ε-PL (M-ε-PL). In this study, we investigated the mechanism of the antifungal activity of S-ε-PL. Circular dichroism analysis suggested that S-ε-PL, like M-ε-PL, could form a β-sheet type secondary structure. S-ε-PL showed higher antifungal activity in SD medium and M-ε-PL in phosphate buffer. Both ε-PLs exhibited antifungal activity without plasma membrane disruption of the yeast cells. S-ε-PL was shown to have relatively higher cell membrane permeability. Mutant strains deleted in different elements of the cell wall integrity pathway were more resistant to S-ε-PL. Keywords :Poly(ε-L-lysine); Cationic Polypeptide; Antimicrobial Activity; Circular Dichroism; Cell Wall Integrity Pathway 円二色性スペクトル解析より、いずれの ϵ -PL も主に β -シート構造からなり(50–65%)、S- ϵ -PL では β -ターンの占める割合が高くなった(>10%)。SD 培地中では S- ϵ -PL が、リン酸緩衝液中では M- ϵ -PL がより高い抗菌性を示した。蛍光色素を用いた観 察より、いずれの ε -PL も細胞膜への細孔形成や膜破壊を引起こさないことがわかった。S- ε -PL は細胞膜の透過性がより高いことが示された(**Fig. 1**)。Sc. cerevisiae における細胞壁の完全性の維持に関わる(CWI)経路を構成する遺伝子の欠損株($mpkl\Delta$, $rlml\Delta$, $chs3\Delta$, $cncl\Delta$, $swi6\Delta$)のほうが、S- ε -PL に対してより耐性を示した。 **Fig. 1.** *Sc. cerevisiae* cells exposed to dansyl-labeled S-ε-PL in (**A**) SD medium and (**B**) phosphate buffer. 1) High-yield production of short chain length poly(ε-L-lysine) consisting of 5–20 residues by *Streptomyces aureofaciens*, and its antimicrobial activity. M. Takehara, A. Hibino, M. Saimura, H. Hirohara, *Biotechnol. Lett.* **2010**, *32*, 1299.