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Reaction pathway search on two-dimensional model potential by deep reinforcement learning
(" Graduate School of Science, Osaka University) OTakechika Kikkawa', Shusuke Yamanaka
', Takashi Kawakami', Mitsutaka Okumura'

Finding transition state and reaction pathway which is determined straightforwardly from
transition state are important to reveal the activation energy and the structural and electronic
structural change. Many reaction pathway search methods that find transition states have been
suggested which utilize the local information of potential energy surface so far. In addition,
machine learning has been lively employed in the area of computational chemistry including
reaction pathway search methods. Some supervised learning models for finding transition state
are suggested. However, considering the amount of dataset of transition state is not enough,
reinforcement learning that does not require dataset is also promising.

In this study, we suggest the new reaction pathway search method by deep reinforcement
learning. The reinforcement learning model utilizes the local information of potential energy
surface as with conventional methods. It predicts the direction of reaction pathway by neural
networks and obtains the strategy to reach the transition states. As a first step toward applying
to the real molecule, we trained the reinforcement learning model on two-dimensional model
potential surfaces. In addition, the effect of lacking the local information on the performance
and the transferability of the reinforcement learning model were also investigated.

Keyword : Reaction pathway search, Machine learning, Deep reinforcement learning
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Insights into the process of acquiring chemical knowledge with deep learning ('Graduate
School of Arts and Sciences, The University of Tokyo) O Teruhisa Sadakane,! Daisuke
Yokogawa'

Deep learning has seen significant advancements in chemistry, enabling a wide range of
applications. These achievements largely rely on the use of large-scale datasets. However, in
chemistry, the high technical demands of experiments often result in the prevalence of small-
scale datasets, leading to a critical issue where model performance significantly declines in
such environments. This study aims to address this issue by incrementally increasing the
number of training samples to analyze how models learn the influence of substituents and
functional groups on molecular properties. By doing so, we seek to elucidate the relationship
between improved prediction accuracy and the process of acquiring chemical knowledge.

In this study, the water/octanol partition coefficient (LogP) was used as a molecular property
to analyze the performance of deep learning in low-data environments and the process of
acquiring chemical knowledge. Specifically, LogP prediction was targeted, and the number of
samples was incrementally increased to evaluate prediction accuracy and the interpretability of
features learned by the model. A Graph Convolutional Network (GCN) was employed, and
Integrated Gradients were applied to visualize chemical knowledge. As a result, it was
confirmed that as the number of samples increased, prediction accuracy improved, and the
model more accurately captured the chemical characteristics of molecular structures.
Keywords : Explainable Al; Feature Attribution; Solubility; Substituent; Graph Neural
Network
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1)Interpretable Attribution Assignment for Octanol-Water Partition Coefficient. D.Yokogawa, K.Suda, J.
Phys. Chem. B. 2023, 127, 7004.
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Exploration of Novel Polar Oxides Using Machine Learning and First-Principles Calculations
(‘Murata Manufacturing Co., Ltd.) OTomoya Gake,' Daisuke Hirai,' Sakyo Hirose'

Materials have degrees of freedom in their composition and structure, resulting in a vast
chemical space represented by their combinations. To accelerate the discovery of novel
materials, effective methods for exploring promising compositions and their stable structures
are needed. In this study, we propose an efficient method for crystal structure prediction that
complementarily utilizes a universal machine learning potential and first-principles
calculations, along with two machine learning models designed to identify promising
compositions within this vast chemical space. Based on these approaches, we conduct an
exploration of novel polar oxides.

By employing the universal machine learning potential M3GNet? in the early stages and the
first-principles calculation code VASP ¥ in the later stages, we achieved a balance between
speed and accuracy in crystal structure prediction. We constructed a machine learning model
to estimate the existence probability of unreported compositions and another model to predict
the polarity based on compositional information, narrowing down the comprehensively
generated unreported compositions to 18 candidates. Subsequent crystal structure predictions
for these 18 compositions identified three candidates for polar compounds that are
thermodynamically and dynamically stable. Since all these candidates have unreported
structures, further expansion of chemical space using this method is anticipated.

Keywords : Polar Oxides;, Composition Recommendation; Crystal Structure Prediction;
Machine Learning; First-Principles Calculations
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1) C. Chen and S. P. Ong, Nat. Comput. Sci. 2022, 2, 718; 2) G. Kresse and J. Furthmiiller, Phys. Rev. B
1996, 54, 11169; 3) G. Kresse and D. Joubert, Phys. Rev. B 1999, 59, 1758.
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Development of General Formulation of Biasing Particle Insertion/Deletion for Grand
Canonical Monte Carlo Method and Its Application to Machine Learning Potentials (' Graduate
School of Engineering, The University of Tokyo) OTatsushi Ikeda, Tomoya Kanno, Akira
Nakayama

The surfaces and interfaces of materials are sites of various chemical transformations, and
investigating the behavior of solutes and solvents at interfaces where bonds are recombined is
important from an academic and engineering perspective. Recent developments in machine
learning potentials (MLPs)' and other computational techniques have made it possible to
perform reactive molecular simulations on an unprecedented scale. Although the grand
canonical Monte Carlo (GCMC) method is effective for equilibrium state structure sampling
without fixing the chemical composition, there are some cases where the GCMC method for
electronic state calculations and MLPs does not satisfy the appropriate balance conditions, such
as the introduction of structure optimization, especially in surface chemistry. Aiming to extend
the GCMC method to reactive systems, we have developed the modified cavity bias (MCB)
method that reformulates the cavity bias method to satisfy detailed balance®. We report the
results of applying this method to hydrogen adsorption on metal surfaces, in combination with
an MLP trained to specialize in energy differences in particle number changes.

Keywords : Monte Carlo Simulation; Grand Canonical Ensemble; Surface Adsorption
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1) E. Kocer, et al., Annu. Rev. Phys. Chem. 2022, 73, 163. 2) T. Ikeda and A. Nakayama. J. Chem. Theory
Comput. 2024, 20, 9364.
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