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あらまし   
本研究では，筆跡解析を通じてうつ病の重症度を判定するモデルを提案する．従来の診断方法は，医師と患者の主

観的なコミュニケーションに依存しており，それが解釈の違いや診断までの時間の長期化につながる可能性がある．

一方で，筆跡データを用いることで，客観的にうつ病を診断できると期待されている．本研究では，ResNetを用い
て筆跡に向いたモデルになるようモデル構造を工夫した．また，Grad-CAM++を活用して筆跡画像内の注目領域を
特定し，それらを正規化された筆跡速度と関連付けた．実験結果では，モデルの注目領域が速い速度よりも遅い速

度の部分に集中していることが明らかになった．  
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1. はじめに  
世界保健機関（WHO）によると，世界中で約 3 億人

がうつ病を患っているとされている [1]．現在，うつ病
の診断は患者と医師の会話を通じて収集された情報に

基づいて行われている [2]．しかし，この診断方法には
2 つの問題がある．1 つ目は診断に時間がかかること
であり，2 つ目は医師の主観的な判断に依存するため
診断結果にばらつきが生じる可能性があることである．

このように，医師と患者の対話に依存した診断には限

界があるため，うつ病の重症度を客観的かつ効率的に

判定するモデルが求められている．  
これまでの研究では，うつ病の判定に音声 [3][4]，表

情 [5][6][7][8]，行動 [9][10]，脳波（EEG）[11][12][13]，
および筆跡 [14][15]などさまざまなデータが利用され
てきた．しかし，これらの方法には多くの金銭的コス

トが伴う．例えば，音声の取得にはマイク，表情や行

動の取得にはカメラ，脳波の取得には EGG ヘッドセ

ット，筆跡の時系列データの取得にはタブレットや特

殊なペンが必要である．また，これらの手法には情報

取得のための設定や準備に時間的コストがかかるとい

う課題もある．一方で，筆跡の画像を利用する方法は

低コストであり，実施に場所を選ばない．そのため，

筆跡画像を用いたうつ病判定の有効性を検証する必要

がある．  
筆跡からうつ病を推定することは容易ではない．理

由は 2 つある．1 つ目は，筆跡科学が 1980 年代頃に疑
似科学と見なされており，筆跡画像からうつ病の特徴

を正確に抽出できるかが不明である点である．2 つ目
は，データ量が少なく，データ作成に工夫を要する点

である．  
そこで本研究では，筆跡データを分割，オーギュメ

ンテーションをすることでデータ不足を補った．また

畳み込みニューラルネットワーク (CNN)の構造を筆跡

に向いたモデルになるように工夫し，筆跡画像を用い

てうつ病の重症度を予測するモデルを提案する．具体

的には，スキップ接続を用いた ResNet [16]を採用し，

筆跡画像からうつ病の重症度を推定するモデルを構築

した．  
本論文の構成は以下の通りである．第 2 章では本研

究の貢献について述べる．第 3 章では関連研究を説明

する．第 4 章では提案手法を詳細に記述し，第 5 章で

実験結果を示す．第 6 章では考察を行い，第 7 章で本

研究のまとめと今後の展望について述べる．  
 

2. 先行研究  
今まで，音声，表情，姿勢，脳波（EEG），および筆

跡などの非言語的行動を用いたうつ病の判定が検討さ

れてきた．音声を用いた手法では，臨床群と非臨床群

の間で F0（基本周波数）やその変動性といった音響バ

イオマーカーが異なることが分析された．しかし，音

声信号は外部のノイズの影響を受けやすく，特徴の信

頼性が低下する可能性がある [3]．また，Williamson ら
[4]による他の音声関連の研究では，音声における運動

協調性をうつ病の重症度推定の指標として検討した．  
表情分析や行動パターンの分析アプローチも有望

な結果を示している．例えば，AVEC チャレンジでは，

表情の微細な変化や音声を用いたモデルが，うつ病検

出において 80%以上の精度を達成した [5][6]．さらに，
Zhou らおよび Huang らの研究では，2D および 3D の
顔データの高度な解析により，空間的および時空間的

な顔の動態を同時に分析することで精度が向上した

[7][8]．  
姿勢や歩行パターンの分析も，うつ病の兆候との関

連が報告されている．例えば，Michalak ら [9]は歩行パ

ターンとうつ病の関係を見出し，Canales ら [10]は悪い

姿勢がうつ病の再発と関連していることを示した．  
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脳波 (EEG)を用いたアプローチも広く研究されてい

る．Seal ら [11]および Spyrou ら [12]の研究では，うつ
病患者の脳波パターンが健常者と有意に異なることが

示され，感情状態の客観的な評価に有望であるとされ

ている．しかし，EEG の測定には専門的な機器が必要

であり，日常的な診断での利用は限られる．  
筆跡に関する先行研究として 2 つの研究を説明する．

Laurence ら [14]は，感情状態と筆跡を関連付けた最初

の公開データベース（EMOTHAW）を作成した．彼ら

はランダムフォレストを用いて，129 人の参加者（女

性 71 人，男性 58 人）が行った 7 つのタスク（5 つの
描画，2 つの筆記）のデータを分析した．この研究で

は，うつ病患者は健常者に比べてタスクの完了に時間

が か か る こ と が 明 ら か に な っ た ． Juan ら [15]も
EMOTHAW データセットを用いて，時系列特徴に基づ
いてうつ病を予測した．タスクの総時間，ペンの浮遊

時間，ペンの接地時間，ストローク数，および平均筆

圧という 6 つの特徴を分析し，80.31%の精度でうつ病

を検出した．これらの分析を行う際には，時系列特徴

をフーリエ変換することで，時間的な詳細情報を取り

入れ，予測精度を向上させた．上記の研究は筆跡に基

づくうつ病予測の成功を示しているが，時系列データ

はデータ量が膨大になる傾向がある．  
そのため，筆跡の画像を使用することで，機材コス

トと患者負担を最小限に抑えた手法が必要である．  
 

3. 提案手法  
3.1 前提  
本研究では，Resnet を用い，入力として筆跡画像を

モデルに入れ，出力としてうつ病の重症度スコアを 0
から 25 で推測するモデルを提案する．まず，モデルに

入力する画像のデータセットの作成方法について説明

する．本研究では，先行研究 [14]のデータを使用する．

このデータでは，4 つの単語を書く際に，x，y，タイム

スタンプ，ペンの状態，方位，高度，筆圧の 7 項目が

1 つのファイルに記録されている．画像作成時には x,y
座標を使用し，出力する画像は下記になる．  

 

図  1 x 座標 y 座標の情報をもとにした画像  

 

 

 

図  2 白黒反転画像と分割例  
 

当初，4 つの単語の時系列データは 1 つのファイルに

含まれていたため，このデータを単語ごとに個別のフ

ァイルに分離する必要があった．そのため，次の単語

を書く時に，大きく左と下に動く行動が行われること

に着目した．この移動を検知し，ファイルを分離した．

その後，各単語はデータに基づいて 300x1200 の画像
に変換した．手書き文字は黒を背景に白で描画した．

そして，各画像は 4 つの 300x300 画像に分割した．理
由は 2 つある．一つ目はデータ数が少ないため，単語

を分割することでデータ数を増やすためである．2 つ
目は，単語全体の筆記傾向（例えば，文章が上向きに

傾いている）ではなく，対象者固有の文字の筆記傾向

を得るためである．さらに，最初の分割で失われた可

能性のある細部を捉えるために 3 つの中間画像を生成
し，1 単語あたり合計 7 枚の画像を得た．  
そして 0 から 25 までのすべてのうつ病重症度スコア

においてデータ数を均等になるようにデータオーギュ

メンテーションを行った．こうして，モデルの入力と

して 300x300 の画像からなるデータセットを作成した． 
 

3.2 モデル  

  
図  3 オリジナル画像と太線化した画像  

 
我々のモデルは ResNet 層と全結合層 (FC 層 )の組み

合わせで構成されている．具体的には 5 つの ResNet 層
と 5 つの FC 層を使用している．CNN は通常，手書き

解析のような画像処理タスクに効果的であるため，当
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初は CNN を使用した．しかし，CNN モデルを利用し
た時に，うつ病の重症度予測値が一定になるという問

題が起こった．この問題は，個々の手書き特徴を一般

化し，本質的な情報を除去する Max pooling 層に起因

していた（図 3）．今回採用したデータセットは，129
人の参加者が同じ 4 つの単語を書いていたため，Max 
pooling を行うと，各個人の書き癖などの情報が欠落し，

同じ特徴を得てしまっていた．Max pooling は，上記の

画像のように，太線化の効果をもたらす．なぜなら，

Max pooling はフィルターの一つでも大きな値があれ

ば全てその値になる処理であるためである．太線化が

行われることで，筆跡の線がずれていてもそのずれが

結果に影響せず，細かい線の特徴によってうつ病の程

度を予測することが難しくなる．この問題に対処する

ため，Max pooling 層を削除した．  
さらに性能を向上させるために，ResNet を用い，ス

キップ接続を使うことで，筆跡画像特徴を取得する．  
3.3 筆跡速度と注目領域の関係  
モデルを検証するために，筆跡速度とモデルの関心

領域との関係を調べた．先行研究では，うつ病患者は

健常者よりもタスクを完了するのに時間がかかる傾向

があることが示されている．モデルが手書きスピード

の遅い領域に注目していることが示せれば，うつ病患

者が認知的に注意を必要とする領域，すなわち書き始

めと書き終わりに注意が向けられていることを示すこ

とができる．これを示すために，次のような手法を行

った．筆跡速度を時系列データから測定し，正規化し

て中央値で速いグループと遅いグループに分けた．分

母は Grad-CAM++[17]の値が 0.5 以上であり筆跡速度

が速いグループの個数を表し，分子は Grad-CAM++の
値が 0.5 以上で筆跡速度が遅いグループの個数を表す．

そして，これら 2 つの値の比を計算する．比率が 1 を
超える場合，このモデルは手書きスピードが遅い領域

により焦点を当てていることを示す．上記の方法を検

証することで，先行研究で示されたように，モデルが

先行研究の特徴を示すことが実証される．  
 

4. 実験  
4.1 目的  
本実験の目的は 2 つある．1 つ目は筆跡画像に基づ

くうつ病重症度推定の精度を評価し，提案モデルの有

効性を検証することである．2 つ目は Grad-CAM++で
強調された領域と筆跡速度の関係を分析し，提案モデ

ルが先行研究で確認された特徴を捉えているかを検証

することである．  
4.2 データセット  
EMOTHAW データセットは 129 人の参加者からな

り，全員がうつ病の重症度を評価するために DASS テ

ストを受けた．テストのスコアは 0～25 点で，被験者

の内訳は， 95 人が 0～9 点，14 人が 10～13 点，13 人
が 14～20 点，7 人が 21 点以上である．参加者はタブ

レットを使って 7 つのタスク（5 つの描画と 2 つの筆
記）に取り組み，筆跡の時系列データが収集された．

各タスクについて，x 座標，y 座標，タイムスタンプ，

ペンが紙に接地しているかどうか，経度，緯度，筆圧

の 8 種類の時系列データが記録された．本研究では，

画像としてモデルを学習させるために，x 座標，y 座

標，タイムスタンプの 3 つの特徴を使って画像を作成

した．  
このデータセットは，被験者間のうつ病の重症度分

布が重症度の軽い方に偏っている．例えば，最も頻度

の高い重症度は 16 人の被験者がいるラベルは 4 であ
り，16×4×7=448 枚の画像が得られる．このアンバラ

ンスに対処するため，各重症度ラベルに 448 枚の画像

が含まれるように，データの増強を行った．この増強

には，平行移動や縮小などの技法が用いられ，合計

11,200 枚になった（ラベル 11 は存在しない）．  
完全なデータセットはその後，3 つの異なる方法で

訓練とテストのサブセットに分割した．  
1 つ目のデータセットは 129 人の参加者を 9：1 の割

合で分け，116 人の参加者のデータをトレーニング用

に，13 人の参加者のデータをテスト用に使用した．テ

ストに選ぶ 13 人は，偏りを避けるために，集合{0, 2, 
4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 25}から 13 個のラベル

をそれぞれ 1 人ずつ代表するように選ぶ．1 つ目の分
割方法を取る理由は，将来の応用のために最も実用的

で現実的なアプローチを表しているからである．私た

ちの目標は，過去のデータでモデルを訓練して，新し

い画像を用いて，うつ病の重症度を予測できるように

することである．したがって，このデータセットは，

この現実的な使用事例に最も近い分割方法を反映して

いる．  
2 つ目の分割方法は，各参加者が作成した 4 つの手

書き単語を 2 つのグループに分け，3 つの単語をトレ

ーニングデータ，1 つの単語をテストデータとして使

用した．2 つ目の分割方法をとる理由は，モデルが個

人の書き癖を学習できるかどうかを評価することであ

る．同一人物が書いた 4 つの単語をトレーニング用に

3 つ，テスト用に 1 つ分けることで，モデルが 3 つの
単語から学習した筆跡パターンを基に，残りの単語か

らうつ病の重症度を予測できるかどうかを検証する．  
3 つ目のデータセットは，完全にランダムに 3:1 で

訓練データ，テストデータに分割した．3 つ目の分割
方法を取る理由は，オーギュメンテーションした画像

も含まれている中，モデルが適切に推測できているか

を確認するためである．  

4K-03 DEIM2025

- 4K-03 -



 

 

4.3 方法  
上記の目的を達成するために，2 つ行った．1 つ目は

データを用いて，うつ病重症度推定モデルを学習する

ことである．そして，MSE を用いて精度を評価し，提

案モデルを検証する．その時に，実際のうつ病重症度

スコアと予測値を箱ひげ図に図示する．散布図では，

データ数が多く，特徴を見ることが困難だからである． 
2 つ目は特徴の検証である．先行研究で特定された

特徴（うつ病患者はタスクを完了するのに時間がかか

る）を検証するために，手書き速度と Grad-CAM++に
よって強調された領域との関係を分析する．  

表  1 ピクセル比率を求めるためのパラメー

タ  
𝐺 各画素の Grad-CAM++値．0 から 1 の

範囲で，モデルがその画素に払う注目

の度合いを表す  
𝑣! 手書きスピードが遅いデータポイン

トのグループで，スピードの中央値に

基づいてデータセットを分割するこ

とによって決定される  
𝑣" 手書きスピードが速いデータ点のグ

ループで，スピードの中央値によって

決定される  
𝑁#!(𝐺 > 0.5) 𝐺 > 0.5である𝑣!内のピクセルの総数  
𝑁#"(𝐺 > 0.5) 𝐺 > 0.5である𝑣"内のピクセルの総数  

𝑟を𝑣!, 𝑣"間の𝐺 > 0.5であるピクセル比率だとすると，𝑟
の式は次のようになる．  

𝑟 =
𝑁#!(𝐺 > 0.5)
𝑁#"(𝐺 > 0.5) 

この式は，遅いグループ𝑣!の𝐺 > 0.5のピクセルの，速

いグループ𝑣"と比較した相対的な注意率を表している．

𝑥の値が大きいほど，𝑣"に比べ𝑣!に𝐺 > 0.5の画素が集中
していることを示す．したがって，𝑟の値が大きいと，

学習モデルが遅い領域に焦点を当て，先行研究で示さ

れたうつ病の特徴を反映していることが示唆される．  
4.4 結果  
データセット 1 

 

図  4 データセット 1 の結果  
トレーニング中のモデルの平均二乗誤差は 1 以下で

あった．最終的な平均二乗誤差（MSE）の値は約 68 と
なった．上の箱ヒゲ図に示されているように，モデル

は識別可能な傾向を示しており，基本的なパターンを

ある程度学習したことを示唆している．  
データセット 2 

 
図  5 データセット 2 の結果  

最終的に MSE の値は約 68 となった．被験者の書き

癖を学習すれば精度が向上すると期待されたが，MSE
はデータセット 1 とほとんど同じであった．  
データセット 3 

 
図  6 データセット 3 の結果  

最終的な MSE の値は約 65 になった．データオーギ
ュメンテーションを行った画像があるため多少精度が

上がったものの，MSE が 0 に近くなるような結果には
ならなかった．  

 
 
 
 
 

4K-03 DEIM2025

- 4K-03 -



 

 

筆跡速度と Grad-CAM++の注目領域の関係  

 

 

図  7 筆跡速度を表した図 (上 )と  
Grad-CAM++の画像 (下 ) 

上図は，筆跡の速度が速い時を赤色，遅い時を青色

で描いた図である．下図は Grad-CAM++の注意領域を

白で表した時の画像である．  
提案手法で説明した方法に基づいて，先行研究の特

徴を学習し，手書き速度が遅い領域についてモデルが

より着目しているかどうかを検証する．分母は，Grad-
CAM++値が 0.5 以上の速いグループの数を表し，分子

は，Grad-CAM++値が 0.5 以上の遅いグループの座標の

数を表す．この値を𝑟とすると，𝑟 = 1.21である．この結
果は，Grad-CAM++が手書き速度が遅い領域により焦

点を当てていることを示している．  

4.5 考察  
本研究では，手書きデータを用いてうつ病の重症度

をある程度予測できることを示した．また，データセ

ット 2，3 の結果から，データオーギュメンテーション
によって作られた画像はオリジナル画像から離れた異

なる特徴を持ち，精度を上げるために用いることがで

きなかった可能性がある．  
図 7 に示すように，Grad-CAM++によって示された

注意領域は，筆記の開始時と終了時に集中しているよ

うである．定量的実験により，これらの注意領域は，

手書き速度が遅い再領域と関連していることが確認さ

れた．これまでの研究で，うつ病患者は健常者と比較

して，課題を完了するのに時間がかかることが示され

ている．このことは，筆記中，筆記速度が遅くなりが

ちな筆記プロセスの開始時と終了時に，認知機能がよ

り大きく関与していることを示唆している．このこと

から，我々のモデルはうつ病の特徴を捉えていること

が示唆される．  
しかし，本研究では，筆圧などの他の要因を考慮し

ていない．さらに，データのサンプル数が限られてい

るため，結果の一般化可能性を評価するためには，さ

らなる検証が必要である．   
 

5. おわりに  
手書き文字からうつ病の重症度を推定するモデル

を開発し，ある程度予測できることを確認した．ResNet
と Grad-CAM++を利用し，注目領域と手書きスピード

の関係を調べたところ，モデルは主に遅いスピードに

関連する特徴を学習することが確認された．このこと

は，モデルが先行研究で特定された特徴を捉えている

ことを示唆している．本研究は，時系列データを画像

として保存して推論を行うことの実現可能性を示すも

のであると考える．  
本研究では，画像に焦点を当てたが，今後の研究で

は，さらなる特徴を探求し，精度の向上を目指す予定

である．また，データセットはイタリアで収集された

ものであることに留意することも重要である．したが

って，他の国の個人のデータを使用して同様の結果が

得られるかどうかを調査することが重要である．  
 

参 考 文 献  
[1] World Health Organization, “Depression and other 

common mental disorders: global health estimates,” 
2017. 

[2] D. A. Regier et al., “DSM-5 field trials in the United 
States and Canada, Part II: test-retest reliability of 
selected categorical diagnoses,” American Journal of 
Psychiatry, vol. 170, no. 1, pp. 59–70, 2013. 

[3] A. Esposito and A. M. Esposito, “On the recognition 
of emotional vocal expressions: motivations for a 
holistic approach,” Cognitive Processing, vol. 13, no. 
2, pp. 541–550, 2012. 

[4] J. R. Williamson et al., “Vocal biomarkers of 
depression based on motor incoordination,” Proc. of 
the 3rd ACM Int. Workshop on Audio/Visual Emotion 
Challenge, pp. 21–28, 2013. 

[5] M. Valstar et al., “AVEC 2013: The continuous 
audio/visual emotion and depression recognition 
challenge,” Proc. of ACM Int. Workshop on 
Audio/Visual Emotion Challenge, pp. 3–10, 2013. 

[6] M. Valstar et al., “AVEC 2014: 3D dimensional affect 
and depression recognition challenge,” Proc. of ACM 
Int. Workshop on Audio/Visual Emotion Challenge, 
pp. 3–10, 2014. 

[7] X. Zhou, K. Jin, Y. Shang, and G. Guo, “Visually 
interpretable representation learning for depression 
recognition from facial images,” IEEE Transactions 
on Affective Computing, vol. 11, no. 3, pp. 542–552, 
Jul.–Sep. 2020. 

[8] X. Ma, D. Huang, Y. Wang, and Y. Wang, “Cost-
sensitive two-stage depression prediction using 
dynamic visual clues,” Proc. of Asian Conference on 
Computer Vision, pp. 338–351, 2017. 

[9] J. Michalak, N. F. Troje, J. Fischer, P. Vollmar, T. 
Heidenreich, and D. Schulte, “Embodiment of sadness 
and depression-gait patterns associated with 
dysphoric mood,” Psychosomatic Medicine, vol. 71, 
pp. 580–587, 2009. 

[10]  J. Z. Canales, J. T. Fiquer, R. N. Campos, M. G. 
Soeiro-de-Souza, and R. A. Moreno, “Investigation of 
associations between recurrence of major depressive 

4K-03 DEIM2025

- 4K-03 -



 

 

disorder and spinal posture alignment: A quantitative 
cross-sectional study,” Gait & Posture, vol. 52, pp. 
258–264, 2017. 

[11]  A. Seal et al., “DeprNet: A deep convolution neural 
network framework for detecting depression using 
EEG,” IEEE Transactions on Instrumentation and 
Measurement, vol. 70, pp. 1–13, 2021. 

[12]  I.-M. Spyrou et al., “Geriatric depression symptoms 
coexisting with cognitive decline: A comparison of 
classification methodologies,” Biomedical Signal 
Processing and Control, vol. 25, pp. 118–129, Mar. 
2016. 

[13]  A. Seal et al., “DeprNet: A deep convolution neural 
network framework for detecting depression using 
EEG,” IEEE Transactions on Instrumentation and 
Measurement, vol. 70, pp. 1–13, 2021. 

[14]  L. Likforman-Sulem et al., “EMOTHAW: A novel 
database for emotional state recognition from 
handwriting and drawing,” IEEE Transactions on 
Human-Machine Systems, vol. 47, no. 2, pp. 273–284, 
2017. 

[15]  J. A. Nolazco-Flores et al., “Emotional state 
recognition performance improvement on a 
handwriting and drawing task,” IEEE Access, vol. 9, 
pp. 1–10, 2021. 

[16]   K. He et al., “Deep residual learning for image 
recognition,” Proc. of the IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR), pp. 
770–778, 2016. 

[17] A. Chattopadhay et al., “Grad-CAM++: Generalized 
gradient-based visual explanations for deep 
convolutional networks,” Proc. of the IEEE Winter 
Conference on Applications of Computer Vision 
(WACV), pp. 839–847, 2018. 

4K-03 DEIM2025

- 4K-03 -


