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あらまし  教育機関で実施されるオンラインやオンデマンド授業は，対面授業と同等以上の教育効果が求められ

ている．閲覧履歴や解答履歴など多様な学習データが蓄積・活用されているものの，遠隔環境における学習の深度

を正確に把握することは依然として困難である．本研究では，オンデマンドプログラミング授業において，学生の

能動的学習データ（教材動画上で学生が行うノート・質問・コメントなどの注釈）を活用し，学生の学びの深さを

定量的に測定する手法を提案する．動画注釈によってフレーム単位で取得される学習者の思考過程を，自然言語処

理技術とブルーム教育分類法を組み合わせて解析し，拡張した分類テーブルを用いて注釈テキストを自動的に認知

レベルへ分類する．結果として，授業の進行に伴い学生の認知スキルが低次から高次へ移行する傾向を定量的に捉

えられ，授業設計の影響も把握できることが示唆された．本研究の成果として，学習深度を評価する客観的指標を

提示し，指導法や個別支援を最適化するための有用な知見を提供できた点が挙げられる．  
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1. はじめに  

近年，プログラミングや工学分野を中心にオンライ

ン教育が急速に普及しており，教育機関で行われるオ

ンラインやオンデマンド授業には，対面授業と同等以

上の教育効果が求められている．一方，文部科学省は

深い学びを重視し，「習得・活用・探究という学びの過

程の中で，各教科等の特質に応じた見方・考え方を働

かせながら，知識を相互に関連付けてより深く理解し

たり，情報を精査して考えを形成したり，問題を見い

だして解決策を考えたり，思いや考えを基に創造した

りすることに向かう」ことと定義している [1]．こうし

た高次の思考力や問題解決力を伴う学習を遠隔環境で

実践するには，対面授業のような即時的フィードバッ

クや学習者間の相互作用が得られにくいため，学習者

がどの程度認知面で深く理解しているかを把握する手

法は依然として十分に確立されていない．  

プログラミング教育においては，文法や構文といっ

た基礎的な知識の記憶・理解から，複雑な問題の解決

や応用を要する高次の認知活動まで，多層的なスキル

が求められる．同じ出力を得られるプログラムであっ

ても，学習者の思考過程やコードの理解度は大きく異

なる可能性があるため，学生には基礎知識の習得に加

え，複雑な課題に対して解決策を導き出す高次の思考

が求められる．しかし，学習者を評価しようとすると，

主に提出物（コードの成果物やレポートなど）を通じ

た評価に偏りがちである．こうした状況を踏まえ，遠

隔プログラミング教育の品質を高めるには，学習者が

実際にどのように思考し，どの程度理解を深めている

のかを定量的に把握できる枠組みが必要となる．  

我々の先行研究では，オンデマンド形式のプログラ

ミング授業において，プログラミング学習に特有的な

動作などを参考にし，講義動画のシーンと学生の質問

や学習ノートとを紐づけることにより，状況を特定す

る記述をほとんど必要としない，動画上に直接注釈を

付与する機能をもつ学習支援システムを開発した [2]．

導入実験の結果，学生は質問の難易度を下げて取り組

めるようになり，ノート・質問・コメントといった注

釈を通じて，教員から学生の考えに沿ったフィードバ

ックが得られやすくなった．これらの注釈は，学習者

が授業内容をどのように理解しているか，どんな疑問

を抱いているかを示すため，学習の深い理解を把握す

るうえでも有益な情報を含んでいると考えられる [3] ． 

そこで本研究では，オンデマンドプログラミング学

習における学習深度を，学習者が残す能動的学習デー

タを用いて定量的に捉え，授業回数の進行に伴う変化

を明らかにすることを目的とする．動画注釈によって

取得される学習者の投稿データを，自然言語処理技術

と Bloom Taxonomy [4]を組み合わせて解析し，拡張し

た分類テーブルを用いて注釈テキストを自動的に認知

レベルへ分類することで，学生の学習深度を客観的に

評価できる枠組みを構築する．  

本稿の構成は以下のとおりである．第 2 章では関連

研究を概観し，第 3 章で提案手法の詳細について説明

する．第 4 章では実験の詳細について述べ，第 5 章で

は実験結果を示す．第 6 章では考察を行い，第 7 章で

結論を述べる．  
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2. 関連研究  

2.1 教育における深い学び．  

近年，日本の教育機関では，従来の講義型・知識伝

達型の授業形態に代わって，学習者が主体的に活動す

るアクティブ・ラーニングが導入されている．アクテ

ィブ・ラーニングでは，単に表面的な知識を習得する

だけでなく，学習内容への深い理解が期待される．し

かし，これらの学習効果を定量的に把握して評価する

には，学生や教員に大きな負担を伴う場合がある．  

Honda ら [5]は，書く・話す・発表するといったアウ

トプット活動への関与や，認知プロセスの外化に注目

することで，アクティブ・ラーニングの質を測定する

ための尺度を開発している．こうした評価基準を活用

すれば，教員側は学生の認知状態や学習状況を客観的

に捉えられるため，その後の指導や支援を最適化しや

すくなると考えられる．  

しかしながら，大規模クラスやオンライン授業など

学習環境が多様化するなかで，教員が目視や対面で学

生の理解度を迅速かつ的確に把握することは容易では

ない．そこで本研究では，テキスト解析などの客観的

な指標を用いて，学生が高次の思考に至っているかど

うかを検証する枠組みの構築を目指す．これにより，

学習者同士のやりとりの可視化やフィードバックの効

率化を図りつつ，深い学びの実現をより確かなものに

できると期待される．  

 

2.2 Bloom’s Taxonomy について．  

Bloom’s Taxonomy[4]は，教育目標を階層的に整理し，

認知スキルを評価する枠組みとして広く知られている．

従来のタキソノミーでは「知識（Knowledge）」「理解

（ Comprehension ）」「 応 用 （ Application ）」「 分 析

（Analysis）」「総合（Synthesis）」「評価（Evaluation）」

の 6 段階が設定されていたが，2001 年に Anderson と

Krathwohl によって改訂され，それぞれが「Remember」

「Understand」「Apply」「Analyze」「Evaluate」「Create」

という動詞形に置き換えられた [6]．これにより，学習

者が実際に行う認知活動がより明確に捉えやすくなり，

教育目標との整合性も高められるようになった．  

さらに Bloom's Digital Taxonomy [7]では，テクノロ

ジーやデジタルツールを用いた学習行動を考慮し，高

次思考力をいかに促進できるかに焦点を当てている．

もともとの 6 段階の認知スキル（記憶から創造まで）

がデジタル技術に対応する動詞で再定義され，現代の

教育課程や学習設計と密接に結びつけられるようにな

った．たとえば「Remembering」には「一覧化する」「識

別する」「検索する」などが含まれ，「Creating」には

「設計する」「構築する」「生成する」といった高次思

考力を伴う行為が挙げられる  

本研究では，オンラインプログラミング教育におい

て，Bloom's Digital Taxonomy が示す 6 つの認知プロセ

スを基盤とし，学生が行う注釈やコメントなどのテキ

ストを自動分類する．これらの動詞群を整理した例が

表 1 である．各カテゴリーに含まれる代表的な行動動

詞を参照することで，どの段階の思考レベルに関する

記述が注釈として残されているかを推定できるように

なる．学習者の書き込みに現れるキーワードやフレー

ズを解析することで，彼らがどの段階の思考プロセス

を実行しているかを客観的に推定することが可能とな

る．オンライン授業で得られる大量のテキストデータ

を有効に活用するためには，このタキソノミーの枠組

みが指標として有用であると考えられる．  

表１．BLOOM 'S D IGITAL TAXONOMY における 6 カテゴリーの

例示的動詞  

カテゴリー  動詞  

記憶する  

Remembering 

定義する，記述する，複製する，  

記憶する，認識する，紐つける，…  

理解する  

Understanding 

関連つける，分類する，説明する，  

要約する，集約する，…  

応用する  

Applying 

構築する，実行する，使用する，  

実験する，編集する，…  

分析する  

Analyzing 

比較する，推論する，連結する，  

統合する，例証する，…  

評価する  

Evaluat ing 

チェックする，結論する，納得する，  

整える，省みる，批評する…  

創造する  
Creating 

構築する，改める，取り替える，  

想像する，推測する，仮定する, …  

 

2.3 自然言語処理と学習分析への応用．  

近年，教育分野では学習者が生成するテキストデー

タ（レポートやコメント，チャットログなど）の分析

を自動化する目的で，自然言語処理（NLP）の技術が

幅広く利用されている．なかでも注目されているのが，

Word2vec [8]や GloVe [9]といった単語埋め込み（Word 

Embedding）のモデルである．これらは大規模なコー

パスから周辺文脈情報を抽出し，単語同士の意味的・

統語的類似度をベクトル空間で表現できる点が大きな

特長となっている .  

Word2vec では，Continuous Bag-of-Words（CBOW）

または Continuous Skip-gram というニューラルネット

ワークモデルを用いて単語ベクトルを学習する．

CBOW は周辺単語から中央の単語を予測し，Skip-gram

は中央の単語から周辺単語を予測するアーキテクチャ

であり，大量の文書データから単語間の共起パターン

を効果的に捉えることが可能である．これにより，教

育現場でしばしば問題となるドメイン特化型の専門用

語や略語の多様な使われ方を扱いやすくなり，単語間

の潜在的な関連性を可視化できる．  
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図１．動画注釈から学習深度の算出ワークフロー．  

2.3 本研究の位置づけ．  

近年はビデオ注釈など学習者が残す能動的なデー

タを活用し，学習の質を可視化・評価しようとする試

みが増えている．しかし，プログラミング教育のよう

に認知スキルが多層的で，文法理解やコード記述とい

った低次スキルから複雑な問題解決を伴う高次スキル

まで包含する領域では，学期全体を通じた学習者の認

知的変化を動的に追跡する手法がまだ十分に確立され

ていない．  

そこで本研究では，Bloom’s Digital Taxonomy を基盤

に し つ つ ， プ ロ グ ラ ミ ン グ 教 育 向 け に 学 習 し た

Word2vec モデルを組み合わせることで，学習者の注釈

テキストを自動的に認知レベルに割り当てる枠組みを

構築する．これにより，学習者が投稿するノートや質

問・コメントの内容から，学期の進行に伴う学習深度

の変化を可視化し，教育実践における指導効果や個別

支援の最適化に寄与することを目指す．  

 

3. 提案手法  

本研究では，オンラインプログラミング授業におけ

る動画注釈データを活用し，学生の学習深度を定量的

に評価する枠組みを提案する．具体的には，Bloom’s 

Digital Taxonomy を基盤とし，形態素解析と Word2vec

による単語埋め込みを組み合わせることで，注釈テキ

スト内の語彙を高次思考力と関連づけて自動分類し，

その傾向を可視化するものである．本手法の大きな特

徴は，以下の 3 点にまとめられる．  

（ 1）ビデオ注釈の直接活用．従来，遠隔授業にお

いては，提出物（ソースコードやレポート）の評価を

通じて学習状況を推定することが多かった．しかし本

研究では，授業動画の特定フレームに学生が残す「ノ

ート」「質問」「コメント」といった注釈テキストその

ものをデータ源とし，学習者の思考過程をより細かく

捉えることを可能にする．すなわち，どのタイミング

でどのような疑問や着想が生まれたかを直接反映する

情報を定量化するアプローチである．  

（2）プログラミング分野に特化した自然言語処理．

注釈データの多くは，プログラミング特有の専門用語

やコード断片，略語が含まれており，汎用的な日本語

解析ツールでは十分に処理しきれない場合がある．そ

こで本研究では，IT 専門用語辞書や授業教材のトラン

スクリプトを組み合わせた独自コーパスを構築し，

Word2vec の Skip-gram モデルを学習することで，プロ

グラミングの文脈に即した類似度計算を可能にした．

これにより，学生の注釈中に現れる多様な言い回しや

専門用語を正確に捉え，適切な認知スキルカテゴリへ

マッピングできるようになる．  

（2）Bloom's Digital Taxonomy 動詞表の拡張．本研

究では，「Remember」「Understand」「Apply」「Analyze」

「 Evaluate 」「 Create 」 の 6 分 類 （ Bloom’s Digital 

Taxonomy）をベースとするが，プログラミング教育特

有の行動動詞や用語を取りこむため，Word2vec を用い

たタキソノミ学習の動詞拡張を行う．すなわち，各タ

キソノミカテゴリに含まれる動詞から類似度の高い単

語を自動抽出し，分類対象となる語彙リストを大幅に

拡充する．これにより，学生が異なる表現や略語を用

いていても，高次思考力に関連する語彙を網羅的に把

握できる．  

以上の枠組みによって得られた注釈と分類結果を

集約し，授業の進行に伴う学習深度の推移や，学生個

人の認知スキルの変化を可視化・評価できる．具体的

な手順としては，次のように進める．   

1.  データ収集：動画から学生が投稿した注釈を収

集し，そのテキスト情報を取得する．  

2.  前処理とキーワード抽出：形態素解析によって

注釈テキストをトークン化し，ストップワード
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除去や正規化を行う（図 1a）．  

3. コーパス構築と Word2vec 学習：プログラミン

グ教育に特化したテキストコーパスを作成し，

Word2vec モデルを学習する（図 1b）．  

4. タキソノミー拡張：学習した Word2vec モデル

を用いて，Bloom’s Digital Taxonomy に含まれる

単語群を類似語で拡張する（図 1b）．  

5. キーワード分類：抽出したキーワードを拡張タ

キソノミーのいずれかのタキソノミーのカテ

ゴリに自動的に分類する．  

6. 集計と可視化：授業回ごと，あるいは受講者ご

とにタキソノミーのカテゴリ分布を集計・可視

化し，学習深度の推移を評価する．  

 

4. 実験  

4.1 実験概要とデータ収集  

本研究のデータは，日本の大学で開講されている

「データマネジメント」科目から得られたものである．

プログラミング初学者向けに設計されており，オンデ

マンド形式の動画教材が 7 本（各約 1 時間）提供され，

受講者は一週間内に任意のタイミングで視聴できる．

表 2 に授業スケジュールの概要を示す．  

表 2．授業スケジュール概要  

授業  

回数  
授業形式 授業内容 

01 対面  ガイダンス  

02 オンデマンド  授業動画 1 

03 オンデマンド  授業動画 2 

04 オンデマンド  課題  

05 オンデマンド  授業動画 3 

06 オンデマンド  授業動画 4 

07 オンデマンド  中間テスト  

08 オンデマンド  中間テスト（予備）  

09 オンデマンド  復習レポート  

10 オンデマンド  授業動画 5 

11 オンデマンド  授業動画 6 

12 オンデマンド  課題  

13 オンデマンド  授業動画 7 

14 オンライン  期末試験  

15 オンライン  期末試験（予備）  

 

本研究で用いた動画ベースの学習管理システム

（LMS）は，授業動画の任意のフレームをクリックす

るだけでノートや質問，コメントなどを投稿できる機

能を備えている．これらの注釈は自動的にタイムライ

ンに紐づけられ，学生が「このフレームで疑問に思っ

た」「この箇所が重要だと思った」といった行動を即時

に記録できる．また，演習課題や成績評価の一環とし

て，注釈の投稿量・内容が「授業内での活動評価」に

組み込まれていたため，受講者は積極的に注釈を残す

傾向があった．  

最終的に，科目に登録していた学生 52 名のうち 42

名から有効な注釈データが得られ，合計 3,014 件の注

釈が 7 本の動画に対して付与された．内容は基礎的な

用語の説明メモから，高度な概念への質問や実装上の

疑問まで多岐にわたる．なお，これらのテキストデー

タは匿名化を行い，研究目的での利用について事前に

学生に伝えた．  

 

4.2 前処理とキーワード抽出  

本研究では，日本語形態素解析ツール GiNZA [10]

を用い，注釈テキストに含まれるキーワードを抽出す

る．GiNZA は，Recruit の研究機関 Megagon Labs と国

立国語研究所の共同研究で開発された学習モデルをベ

ースとしており，spaCy のフレームワークと SudachiPy

のトークナイザを組み合わせて日本語を解析する [20]． 

しかし，標準的な GiNZA モデルでは IT 固有の専門

用語やコード断片が数多く含まれる本研究のデータを

十分に扱えない場合がある．そこで，著者らが独自に

作成した IT 専門用語辞書（27,381 語）を GiNZA に統

合し，「情報科学総合教材用語リスト」[21]も併用する

ことで IT 用語の認識精度を高めた．これにより形態素

解析時に IT 用語が適切に 1 トークンとして扱われ，意

図しない分割や読み誤りが大幅に削減できた．  

前処理の具体的な手順は図 1a に示すように以下の

とおりである．  

1.  トークン化：カスタマイズ済みの GiNZA で文

を単語単位に分割する．  

2.  ストップワード除去：助詞・接続詞など意味を

持たない単語を取り除く．  

3.  標準化：同義表現を一つの基本形に統合し，「テ

ーブル」「テーブル化」「テーブルにする」など

のゆらぎを軽減する．  

以上を経て得られたキーワードは，後続の分類処理

に供する．  

 

4.3 タキソノミ学習の動詞の拡張生成  

単語埋め込みモデルの学習には，大規模でドメイン

特化したコーパスを使用することが望ましい．本研究

では， (1) カスタム IT 用語リストの各語に対応する

Wikipedia 日本語版の解説文（計 15.9MB）と， (2) 授

業動画のトランスクリプト（計 303KB）を組み合わせ

た独自コーパスを構築した．後者のテキストは ffmpeg

で抽出した音声データを OpenAI Whisper で文字起こ

ししたものである．  

図 1b に示すように，これらのコーパスを用いて

Word2vec モ デ ル を 学 習 す る ． Word2vec に は 主 に

5H-03 DEIM2025

- 5H-03 -



 

 

Continuous Bag-of-Words （ CBOW ） と Continuous 

Skip-gram の 2 種類があるが，本研究では周辺文脈が

比較的広範に分散していると想定し，Skip-gram を採

用した．学習時には単語ベクトルの次元数やウィンド

ウサイズなどのハイパーパラメータを調整し，プログ

ラミング教育領域において有用な語彙類似度を得られ

るよう最適化を図った．  

学習済みの単語ベクトルは，コサイン類似度によっ

て語彙間の意味的近さを定量的に比較できる．たとえ

ば「 function」「 return」のようなプログラミング特有の

単語同士が高い類似度を示すだけでなく，「データベー

ス」「正規化」「クエリ」などの専門用語間の文脈的な

近さも把握可能となる．こうした特性により，Bloom’s 

Digital Taxonomy に含まれない表現であっても，意味

的に対応するカテゴリーを推定しやすくなる．  

 

4.4 キーワード分類  

本研究では，Bloom’s Digital Taxonomy に含まれる動

詞（例：Remember カテゴリーであれば「列挙する」「識

別する」など）を出発点とし，Word2vec モデルを組み

合わせることで語彙を拡張している．タキソノミーの

各カテゴリーには複数の行動動詞が定義されているが，

プログラミング教育の実際の場面では学生がそのまま

動詞を使用するとは限らない．  

具体的には以下の手順でタキソノミーを拡張する． 

1. 単語ベクトルの取得：Bloom's Digital Taxonomy

にある動詞（表１．各カテゴリーには約 30 単

語程度）について，学習済み Word2vec モデル

から対応するベクトルを取得する．  

2. 類似度計算：コーパス中のすべての単語ベクト

ルとのコサイン類似度を算出し，あらかじめ設

定した閾値（本研究では 0.3）以上を抽出する．  

3. カテゴリーへの追加：閾値を超えた単語を，対

応動詞のカテゴリーに加える．たとえば「理解

す る 」 と 類 似 度 が 高 い 単 語 で あ れ ば

“Understand”に追加する．  

このプロセスにより，最初は 180 語程度だったタキ

ソノミーの語彙が，プログラミング文脈で学生が用い

る表現や専門用語を含む大規模な分類テーブルへと拡

張される．拡張後のタキソノミーを用いることで，学

生が独特な表現や略語を使った場合でも，高い精度で

認知レベルを推定できるようになる．  

最後に，前処理で得られた注釈テキストのキーワー

ドを拡張タキソノミーに照合し，以下のステップで分

類を行う．  

1. 直接マッチング：キーワードが拡張タキソノミ

ーの単語と完全一致すれば該当カテゴリーに

割り当てる．  

2.  レママッチング：一致しない場合，語形変化や

ゆらぎを吸収するために基本形や派生形を探

索して再照合する．  

3.  集計：注釈内に含まれるキーワード数をカテゴ

リー別にカウントする．注釈全体としては，キ

ーワード出現頻度の合計を用いて，どの認知ス

キルに関連する言語表現が多いかを測定する． 

こうして得られた分類結果をもとに，授業回単位や

学生個人単位で認知スキルの分布を集計し，学習深度

の可視化・評価を行う．すなわち授業が進むにつれて

深い学びへ移行しているか，あるいは各学生がどのよ

うな認知パターンを示しているかを時系列で把握でき

るようになる．  

 

5. 結果  

5.1 前処理の結果  

IT 専門用語辞書を GiNZA 形態素解析ツールに統合

した結果，本研究のデータセットに含まれる IT 特有の

用語の認識精度が大幅に向上した．実験では，最適化

前の標準 GiNZA モデルと比較して IT 用語として正し

く認識された単語数が 5,641 から 6,516 に増加し，約

15.57%の増加率が得られた．さらに IT 用語が全キー

ワードに占める割合も約 13.5%から 16.4%へ上昇した．

一方で，最終的に抽出されたキーワードの総数は最適

化前の 41,848 トークンから 39,819 トークンへと 4.85%

減少しており，不要な分割や誤判定が減少したことを

示唆している．  

これらの結果は，IT 用語辞書の組み込みによって解

析精度が向上し，プログラミング教育のテキストデー

タ特有の専門用語を的確に捉えられるようになったこ

とを意味する．とりわけコード断片やアルゴリズム名

などが多用されるプログラミング学習の注釈データで

は，形態素解析の正確性がその後のキーワード抽出や

分類に直接影響を与えるため，この精度向上は本研究

の分析手法において重要な役割を果たす．  

 

5.2 タキソノミ学習の動詞の拡張結果  

Word2vec モデルを用いて Bloom’s Digital Taxonomy

に含まれる動詞群を拡張したところ，カバー範囲と精

度が大きく向上した．拡張前は各認知スキルに関連す

る動詞のみを含む合計 180 語ほどだったが，Word2vec

による類似語追加により 4,383 語へと大幅に拡張され，

プログラミング教育で頻用される専門用語や表現もカ

バーできるようになった．  

実際の分類では，前処理段階で抽出された 39,819 の

キーワードのうち 8,404 語（約 21.1%）が拡張タキソ

ノミーテーブルのいずれかの認知スキルカテゴリーに

割り当てられ，残る約 78.9%は未分類となった．これ
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図２．各動画による認知スキル割合分布．  

 
図３．各動画による注釈数・抽出キーワード数・  

分類したキーワード数． 

は日本語表現の多様さや，固有名詞・コメント的発話

など，本分析の対象外語彙が含まれていることが理由

と考えられる．なお，この分類率（20～30%程度）は

著者らの別研究の結果とも概ね一致している．  

タキソノミーを Word2vec でドメイン特化拡張した

ことで，学生が異なる言い回しや文体を使った場合で

も，適切に認知スキルを推定しやすくなった点は，本

手法の有効性を示す根拠となる．  

 

5.3 学習深度の定量的評価  

図 2 に，各動画回（レッスンごと）における認知ス

キル分類結果を示す．あわせて，図 3 には動画回ごと

の注釈数・抽出キーワード数・分類に成功したキーワ

ード数の推移を示した．  

低次認知スキル（Remember, Understand, Apply）の

減少傾向．学期が進むにつれて，いわゆる浅い学習レ

ベル（Remember, Understand, Apply）の割合が徐々に

低下している．  

高次認知スキル（Analyze, Evaluate, Create）の増加

傾向．一方で，Analyze, Evaluate, Create といった高次

の認知活動を示すキーワードの割合は全体として増加

傾向を示し，特に Create は最終回に向け顕著に上昇し

た．ただし，第 5 回レッスンのみ Analyze が大きく落

ち込み，Remember と Understand が増加する例外的パ

ターンが見られる．これは授業内容が基礎的な復習を

要する領域にシフトしたためと推察される．  

図 3 からは，動画回ごとの注釈数（300～600 件）に

明確な増減トレンドは見られないものの，抽出キーワ

ード数は大きく変動し，第 2 回で最も多い 9,701 語，

第 1 回レッスンで最も少ない 3,723 語となっている．

しかし，注釈 1 件あたりのキーワード数は概ね 10～18

前後で安定しており，注釈 1 件あたりの分類成功キー

ワード数も 1.65～4.62 の範囲で推移している．すなわ

ち，レッスン内容や学生の書き込み方によって注釈数

やキーワード数に差はあるものの，各注釈に含まれる

情報量は一定レベルで保たれていると考えられる．  

 

6. 考察  

5.1 学習深度の変化  

本研究の結果によれば，授業が進行するにつれて

「Remember」「Understand」「Apply」といった低次認知

スキルが徐々に減少し，「Analyze」「Evaluate」「Create」

のような高次認知スキルが増加する傾向が確認された．

これは学期を通じて，学習者が基礎知識の習得から，

より高度な批判的思考力や創造的思考力へ移行してい

る可能性を示唆する．特に「Create」の割合が最終回

で顕著に増加していた点は，授業後半でより複雑な課

題に取り組むだけの下地が形成されたことを示すとい

える．  

一方，第 5 回レッスンのみ「Analyze」の割合が急減

し，「Remember」や「Understand」の割合が再度高まる

現象が観察された．これは授業内容が復習や基礎再確

認に重きを置く構成にシフトしたこと，あるいは同時

期に他科目の課題や試験が集中したことによる認知負

荷の増加が原因として考えられる．学習者が一時的に

低次スキルへ回帰することは，高度な学習を継続する

うえで必要な基礎知識を再度固めるプロセスでもある

ため，必ずしも学習効率の低下を意味しない点に留意

が必要である．  

加えて，本研究ではクラス全体の注釈に対し，注釈

1 件あたりの抽出キーワード数や注釈 1 件あたりの分

類成功キーワード数といった指標を導入し，学生の書

き込み量や情報量を把握した．注釈 1 件あたりの抽出

キーワード数が約 10～18 の範囲で比較的安定してい

ることからは，ビデオ注釈という簡易な入力手段であ

っても，学生の思考や疑問が一定以上の情報量をもっ

て表現されていると推測できる．一方，Bloom’s Digital 

Taxonomy と照合できたキーワードは 21.1%程度にと

どまり，残る 8 割近くは分類されない単語がある．  

分類されない単語については，頻繁に登場する授業

中の名詞をメモ的に書き留めるものが多いと考えられ

る．これらは学習者にとって重要なキーワードである
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が，動詞を中心に認知スキルを捉える仕組みであるこ

とを踏まえると，こうした名詞の増加や単純な用語メ

モの記録が，必ずしも高次思考力や認知技能の変化を

直接的に反映しているわけではないだろう．専門用語

が多く注釈されていても，それだけで「Analyze」や

「Evaluate」といった認知プロセスが十分に機能して

いるとは断定できないと考えられる．  

 

5.2 教育への応用  

こうした動的変化を注釈データからタイムリーに

把握できる点は，本研究で提案した手法の大きな意義

といえる．従来のテスト結果や提出物だけでは捉えき

れない学習過程の揺らぎを可視化できるため，教員は

学生がどの段階で理解に行き詰まっているか，あるい

はどの領域でより高度な思考に進んでいるかを早期に

見極めやすくなると考えられる．また，授業進行に伴

う学習深度の推移を定量的に評価できるようになるこ

とで，授業設計の狙いや学習到達度との整合性を検証

しやすくなる．たとえば，高次スキルの育成を掲げて

いるにもかかわらず，注釈の大半が「Understand」に

とどまっている場合，教授法や学習活動を見直す契機

と捉えられる．さらに，個別学習者の注釈を時系列で

追えば，どの時点で深い学びに進めているか，あるい

は理解が停滞しているかを早期に捉えられるため，よ

り効果的なフィードバックや支援が実現しやすくなる

だろう．  

オンライン教育や大規模クラスの文脈でも，ビデオ

注釈のような簡易な操作で得られるテキストデータを

活用すれば，多様な学習者の高次思考の状況を可視

化・評価できる可能性がある．本研究の手法を他分野

の科目や異なる学習環境に展開していくことで，さま

ざまな授業形態における学習深度の把握や教員の指導

設計への還元をさらに促進できると期待される．  

 

7. おわりに  

本研究では，Bloom's Digital Taxonomy と自然言語処

理技術を組み合わせ，オンラインプログラミングコー

スにおける学生の注釈データから学習深度を定量的に

測定する枠組みを示した．具体的には，日本語形態素

解析ツールの最適化や専門用語辞書の導入，ドメイン

特化型 Word2vec モデルの学習を通じて，学生が残す

ノート・質問・コメントのキーワードを認知スキルに

分類する手法を構築している．その結果，授業の進行

に伴い学生の認知活動が下位レベルから上位レベルへ

移行する傾向が明確に捉えられ，指導内容や教授方略

が学生の認知スキルに与える影響を示唆した．  

従来のテスト成績や提出物中心の評価では把握し

づらい学生の思考過程を，より詳細かつ動的に追跡で

きる点は本手法の大きな特徴である．学習深度を可視

化することで，教育者は授業設計の有効性を検証し，

個々の学生への指導やサポートを的確に行うことが期

待できる．特に，学期中のどの時点で学習深度が停滞・

後退しているかを把握すれば，適時のフィードバック

や支援策を講じることが可能となる．  

今後の課題としては，タキソノミー拡張のさらなる

精緻化や，リアルタイム解析を学習管理システムに組

み込む実装面の検証が挙げられる．また，プログラミ

ング以外の分野や大規模クラスへの適用可能性につい

ても検討が必要である．多様な教育現場で本手法を応

用し，学習者の認知的発達をデータに基づいて把握・

支援する枠組みとして発展させることが期待される．  
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