Session Oral | T7 [Topic Session] Latest Studies in Sedimentary Geology

■ Mon. Sep 15, 2025 3:00 PM - 5:45 PM JST | Mon. Sep 15, 2025 6:00 AM - 8:45 AM UTC **■** oral room 5(E205)

[2oral510-18] T7. Latest Studies in Sedimentary Geology

Chiar:Dan MATSUMOTO(GSJ, AIST), Fumito SHIRAISHI(Hiroshima University)

ECS

4:30 PM - 4:45 PM JST | 7:30 AM - 7:45 AM UTC

[T7-O-5] Concretion formation process of trace fossil *Tasselia ordamensis* from the Hayama Group distributed in the Miura Peninsula, Kanagawa

*Akihide KIKUKAWA^{1,2}, Satoshi TAKAHASHI², Osamu ABE², Yoshihiro ASAHARA², Noboru FURUKAWA³, Hidekazu YOSHIDA², Nagayoshi KATSUTA⁴, Yoshiaki AITA⁵ (1. Natural History Museum and Institute, Chiba, 2. Nagoya University, 3. Chiba University, 4. Gifu University, 5. Utsunomiya University)

Keywords: carbonate concretion、early diagenesis、microfossil preservation potential、siliceous microfossil、Miocene

生痕化石は,底生生物の摂食や排泄,巣穴といった活動の痕跡が堆積物に記録されたもので,顕生代の堆積層中で頻繁に見られる.生痕化石の一部は,その形成過程で化石内部に海底表層堆積物を保存するため,海底面の削剥等で失われる堆積物記録を保持することが知られている.また,一部の生痕化石は炭酸カルシウム(カルサイト)のセメンテーションによりコンクリーション化することが知られている.カルサイトを主成分とするコンクリーション化は,形成が非常に速く砕屑物粒子の間隙がカルサイトで充填されることで内包物を埋没続成作用による破壊・変質から保護することが知られている(吉田,2023).つまり,コンクリーション化生痕化石は,削剥作用や埋没続成作用で失われる可能性のある初生的な堆積物記録を保持する特性を持つと考えらえる.

こうした特徴に着目し,筆者らは, $Tasselia\ ordamensis$ と呼ばれる多毛類のコンクリーション化生痕化石(以後Tasselia コンクリーションと呼称)を対象とし,そのコンクリーション化過程や内部に観察される珪質微化石の保存過程を研究してきた(例えば,Kikukawa et al., 2024).本研究では,三浦半島の中新統葉山層群から新規採取したTasselia コンクリーションを用いた.この試料の内部には,周辺マトリクス(母岩)からの珪質微化石では確認できない微細構造が良く保持された個体が多数存在する.そこで,本試料のコンクリーション化過程を解明するため,コンクリーションと母岩に関して,薄片観察およびXRDによる鉱物組成分析,走査型X線分析顕微鏡による元素マッピング,ガラスビード法による蛍光X線分析装置による化学組成分析,安定同位体比質量分析計(IRMS)による炭酸塩鉱物の炭素・酸素同位体比(δ^{13} C $_{carb}$, δ^{18} O $_{carb}$)分析を行った.

Tasseliaコンクリーション内部は,石英や斜長石を主体する砕屑物粒子と保存良好な微化石,そしてそれらの間を充填する微細なカルサイト(高Mgカルサイト)で構成される.コンクリーション内部はCaに富み,母岩はSiやAl, Ti, K, Feが分布する.そのCaO含有量は母岩に比べてコンクリーション内部が約20倍,MgO及びMnO量は約2~3倍, P_2O_5 量は約4倍濃集する.また,LOIはコンクリーション内部が約4倍高い値を示す.一方,SiO2やTiO2, Al2O3, Na2O, K2Oは,母岩に比べてコンクリーション内部が約半分の含有量であった.コンクリーションの δ^{13} Ccarb値は 18 18.9%から 18 18.0 %から 18 18.0 %から 18 25.5%であった.さらに,IRMS分析時に発生する 18 30分割の見積もった炭酸塩含有率はコンクリーション全

体の約50%であった.

Tasseliaコンクリーション δ^{13} C $_{carb}$ 値は,堆積当時(中期中新世)の底生有孔虫化石殻の δ^{13} C値(1.0% ~ 2.0%: Zachos et al., 2001)と比べて顕著に低い一方, δ^{18} O $_{carb}$ 値はその δ^{18} O値(1.5% ~ 2.5%: Zachos et al., 2001)に近い.本試料の δ^{13} C $_{carb}$ 値は,コンクリーションを構成する炭酸塩鉱物の起源の大半が生物由来の有機物に起因することを示す(Yoshida et al., 2015, 2018).さらに,CaO及びMgO含有量とLOI量から算出される炭酸塩含有率は全体の約50%であり,上述した分析時に見積もられた炭酸塩含有率や元素マッピングによるCa分布と整合する.これらの整合性や炭酸塩含有量及び同位体比の均質性は,Tasseliaコンクリーションが海底面下付近において,埋没後の初期段階に,初生的な孔隙を炭酸塩鉱物が極短期間に充填することで形成されたことを示唆する.したがって,Tasselia ordamensis形成者の活動の結果,堆積物中の初生的な孔隙を充填した有機物(おそらく粘液や排泄物)がコンクリーションを形成した炭酸塩鉱物の主要な炭素源であると考えられる.この初期埋没過程におけるコンクリーション化の結果,保存状態良好な微化石殻を含む堆積物がTasseliaコンクリーション内にシーリングされ保存されたと考えられる.

【参考文献】

Kikukawa et al., 2024, *Lethaia* **57**, 1-20. 吉田,2023,地質雑 **129**,1-16. Yoshida et al., 2015, *Sci. Rep.* **5**, 14123. Yoshida et al., 2018, *Sci. Rep.* **8**, 6308. Zachos et al., 2001, *Science* **292**, 686-793.