Session Oral | T4 [Topic Session] Deformation and reaction of rocks and minerals activities

**■** Tue. Sep 16, 2025 8:45 AM - 12:00 PM JST | Mon. Sep 15, 2025 11:45 PM - 3:00 AM UTC **■** oral room 3(E201)

## [3oral301-12] T4. Deformation and reaction of rocks and minerals activities

Chiar:Hideki Mukoyoshi(Shimane Univ.), Masaoki UNO(Dept. Earth, Planet. Sci., Univ. Tokyo), Junichi FUKUDA(Osaka Metropolitan University)

9:45 AM - 10:00 AM JST | 12:45 AM - 1:00 AM UTC

[T4-O-13] Fluid movement accompanied with grain growth: See-through experiments using camphor-ethanol mixtures

\*Junichi Fukuda<sup>1</sup>, Yusuke Seto<sup>1</sup> (1. Osaka Metropolitan University) Keywords: Rock analogue、Camphor、Fluid、Grain growth

地殻内部において、流体(主として水)は普遍的に存在し、粒成長、変形、反応などを促進させ、岩石微細組織の変化に伴って流体分布も変化する。本研究では基本的な現象である 粒成長に注目する。

これまでに地殻の主要構成鉱物である石英や長石集合体について粒成長実験が行われ、粒成長則や水の添加による粒成長促進機構が評価されてきた(例えばFukuda et al. 2019)。しかし、実際の地殻構成物質を用いた実験では、ピストンシリンダー試験機などの大掛かりな装置が用いられ、実験温度圧力条件は例えば1 GPa, 1000°Cなどと非常に高い。さらに各温度、圧力、保持時間の実験ごとに試料を回収し、実験回収試料の微細組織観察を行うことから、試料の組織は常に凍結されている。この凍結された微細組織と流体相分布の情報をもとに、実験時の粒成長と流体相の挙動を想像するしかない。

一方、有機物などの岩石模擬物質を用いれば、室温から100℃程度、かつ数分で有意な粒成長が起こり、光学顕微鏡下で微細組織発達のリアルタイム観察を行うことができる。Fukuda(2024)では岩石模擬物質として樟脳(C<sub>10</sub>H<sub>16</sub>O、密度0.99 g/cm<sup>3</sup>)を用い、室温、偏光顕微鏡下で明瞭な粒成長過程を観察した。

本研究では、樟脳に加えて流体相としてエタノールを用いた。実験準備として、室温で乳鉢に樟脳約200 mgに10 vol%程度のエタノールを添加し、すりつぶした。次に樟脳-エタノール混合物約5 mgをスライドガラスに載せ、上から別のスライドガラスで押し付けた。上のスライドガラスを取り除くと、密な樟脳-エタノール混合物が得られる。この混合物の載ったスライドガラスを偏光顕微鏡下に移動させ、40倍または100倍の対物レンズを用いて、適度なエタノール分布領域を選定した。先のスライドガラス上での試料作成後から偏光顕微鏡下での観察領域の選定は、粒成長を最小限にするために1分以内で行った。そして、粒成長に伴う流体挙動を偏光顕微鏡に設置したカメラで録画した。

樟脳集合体の平均初期粒径は約7 μmで、室温で1時間観察すると粒径は約20 μmまで増加した。この粒成長に伴う流体挙動として、次の3種類の特徴的な過程が観察された。1. 粒界に存在する流体が、粒成長による粒界移動により、近接する別の流体と合体して一つの大きな流体となる。2. 粒界に存在し、粒界の形状に合うように伸長した流体が、粒成長による粒界移動により、粒界から樟脳結晶内部に移動する。その結果、流体の形状が球状になる。3. 元々粒内になった球状の流体が、移動してきた粒界中に取り込まれる。

上記の3つの流体挙動のうち、1の合体により流体の平均サイズは大きくなり、視野内の流体数は減少した。一方、視野内の全流体の総面積は一定であった。このように、粒成長に伴い流体相の分布が変化することが観察され、実際に地下内部で行っている機構を推察するこ

©The Geological Society of Japan

とができる。

さらに本発表では50℃程度までの加熱その場観察実験方法について紹介する。フィルムヒータ上に上記の樟脳-エタノール混合物を準備したスライドガラスを設置し、偏光顕微鏡下で加熱しながら、粒成長を観察する手法を構築した。

Fukuda J. (2024) Grain growth of camphor as a rock analogue: microstructural development and grain growth law. Journal of Mineralogical and Petrological Sciences. Vol. 119:010

Fukuda J., Raimbourg H., Shimizu I., Neufeld K., Stünitz H. (2019) Experimental grain growth of quartz aggregates under wet conditions and its application to deformation in nature. Solid Earth, Vol. 10, pp. 621–636