

The Sapphire Regime: Realizing Si-Doped α -(Al_xGa_{1-x})₂O₃ Films with $E_g > 7$ eV with S-MBE

Jacob Steele,¹ Kazuki Nomoto,² Debaditya Bhattacharya,² Huili G. Xing,^{1,2,4} Debdeep Jena,^{1,2,4} and Darrell G. Schlom^{1,3,4}

¹ Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA,

² School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA,

³ Platform for the Accelerated Realization, Analysis, and Discovery of Interface Materials (PARADIM), Cornell University, Ithaca, New York 14853, USA,

⁴ Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, USA

Js3625@cornell.edu

Introduction

For high power devices, the superlinear dependence of $V_{Br} \propto E_g^{-5.5}$ has led to research interest in ultrawide bandgap (UWBG) semiconductors ($E_g \gtrsim 3.5$ eV). One emerging candidate UWBG is α -(Al_xGa_{1-x})₂O₃ because it has a tunable E_g from 5.4 – 8.6 eV that is predicted to have shallow donors over the range of 5.4 – 7.5 eV, which is higher than any known semiconductor. Achieving active donors, even at the limit of $x = 0$, has proven to be extremely difficult and the first successful demonstration by MBE was only shown last year, 2024, and had very limited conductivity.[1] As we had previously used S-MBE to grow α -(Al_xGa_{1-x})₂O₃ with the best structural quality and α -Ga₂O₃ with the highest mobility and conductivity of any method, we now extend the technique to dope α -(Al_xGa_{1-x})₂O₃ thin films.[2]

Experimental Procedures

To grow these α -(Al_xGa_{1-x})₂O₃ films, an S-MBE Veeco Gen10 MBE system was fitted to provide 80% distilled O₃ + 20% O₂ as the oxidant gas and was loaded with three pumped, retractable effusion cells containing elemental aluminum, Ga₂O, and SiO₂ sources. The growth procedure was a three-step method where a relaxed α -(Al_xGa_{1-x})₂O₃ buffer layer was grown at a relatively high substrate temperature (T_{sub}) of ~725 °C, a second layer was grown at a moderate T_{sub} of ~550 °C, and the doped overlayer was grown at a relatively low T_{sub} of ~480 °C.

Results and Discussion

By altering the two-step procedure that we utilized to achieve record electrical transport properties in α -Ga₂O₃ to be a three-step procedure, as described above, we can reliably achieve conductive Si-doped α -(Al_xGa_{1-x})₂O₃ thin films with S-MBE. The technique has so far produced conductive α -(Al_xGa_{1-x})₂O₃ with x as high as 0.62, which corresponds to an E_g of 7.20 eV. This is the highest E_g of any semiconductor that has been successfully doped to date. For $x \geq 0.42$ ($E_g \geq 6.5$ eV), we exhibit a 10⁸× advantage in conductivity over the previous best results.[3]

Acknowledgement

This work was supported by the AFOSR/AFRL ACCESS Center of Excellence under Award FA9550 18 1 0529. Our work used the Cornell Center for Materials Research Shared Facilities, which are supported through the NSF MRSEC Program (Grant DMR 1719875). Substrate preparation was performed with the Cornell NanoScale Facility, a member of the National Nanotechnology Coordinated Infrastructure (NNCI), which is supported by the NSF (Grant NNCI 2025233). This work made use of the Cornell Energy Systems Institute Shared Facilities partly sponsored by the NSF (Grant MRI DMR 1631282).

References

- [1] H. Okumura et al., Jpn. J. Appl. Phys. **63**(5), 055502 (2024).
- [2] J. Steele, et al., APL Mater. **12**(4), 041113 (2024).
- [1] H. Okumura, and J.B. Varley, Jpn. J. Appl. Phys. **63**(7), 075502 (2024).
- [2] H. Son, Y. Choi, J.-H. Park, B. Ryu, and D.-W. Jeon, ECS J. Solid State Sci. Technol. **9**(5), 055005 (2020).
- [3] K. Akaiwa, K. Kaneko, K. Ichino, and S. Fujita, Jpn. J. Appl. Phys. **55**(12), 1202BA (2016).
- [4] G.T. Dang, T. Yasuoka, Y. Tagashira, T. Tadokoro, W. Theiss, and T. Kawaharamura, Appl. Phys. Lett. **113**(6), 062102 (2018).
- [6] S. Vogt, et al., Phys. Status Solidi (a) **220**(3), 2200721 (2023).
- [8] K. Akaiwa, K. Ota, T. Sekiyama, T. Abe, T. Shinohe, and K. Ichino, Phys. Status Solidi (a) **217**(3), 1900632 (2020).

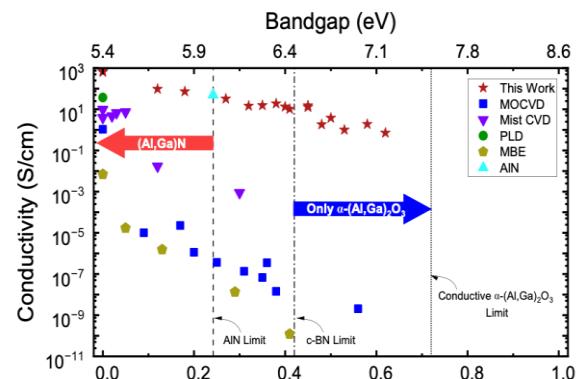


Figure 1. A plot of the conductivity in S/cm versus eV and x . The highest published conductivities for AlN and α -(Al_xGa_{1-x})₂O₃ films grown by MOCVD, mist CVD, PLD, and MBE are included.[1][3]-[8]