

## First demonstration of N-polar high Al-content AlGaN channel HEMT grown by plasma-assisted molecular beam epitaxy

Stefan Kosanovic<sup>1</sup>, Irfan Khan<sup>2</sup>, Harsh Rana<sup>1</sup>, Rijo Baby<sup>1</sup>, and Elaheh Ahmadi<sup>2</sup>

<sup>1</sup>Department of Electrical and Computer Engineering, University of California, Los Angeles

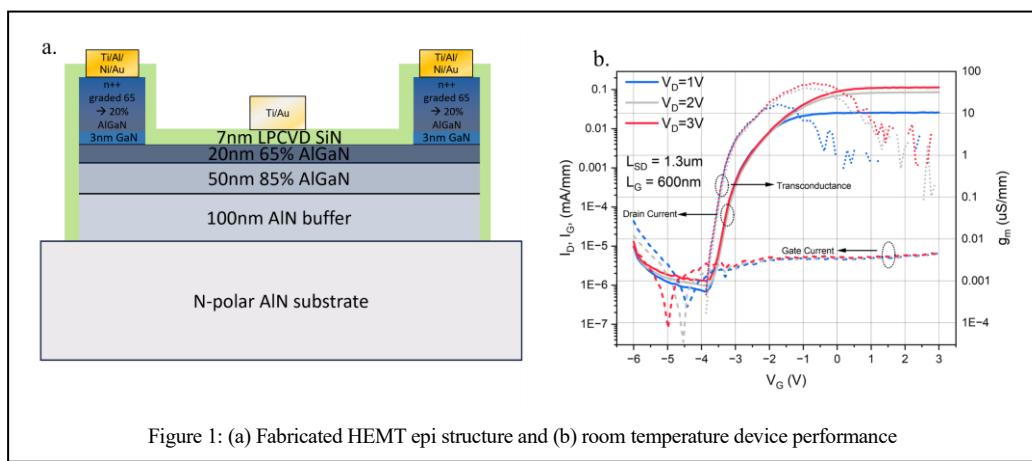
<sup>2</sup>Electrical and Computer Engineering Department, University of California, Santa Barbara

kosanovic@ucla.edu

### Introduction

AlGaN channel HEMTs exhibit a tunable direct bandgap (3.4–6.1 eV), superior breakdown characteristics (>10 MV/cm), high electron mobility, and fast saturation velocity, making them strong candidates for next-generation electronic and optoelectronic systems [1-3]. Increasing the Al mole fraction in the channel further widens the bandgap and enhances the breakdown capability, which translates into improved voltage handling and a higher Johnson's figure of merit. Similar to GaN, N-polar AlGaN theoretically offers superior performance, particularly when it comes to ohmic contacts; for N-polar, the surface is the channel, rather than the barrier. Here we present the first N-polar high Al-content AlGaN HEMT grown by PAMBE. A 3nm GaN cap is grown in-situ to prevent the oxidation of the surface, while still allowing for an ohmic contact to the channel using molecular beam epitaxy (MBE) regrown contacts.

### Experimental Procedures


Devices were mesa isolated using a  $\text{BCl}_3/\text{Cl}_2$  dry etch. An  $\text{Al}_2\text{O}_3/\text{SiO}_2$  hard mask was deposited and patterned to selectively grow heavily Si-doped reverse compositionally graded AlGaN to form ohmic contacts to the channel. The GaN cap over the gate was etched, and LPCVD SiN was deposited as a gate insulator. Ti/Al/Ni/Au source/drain contacts were deposited on the regrown AlGaN and annealed, and Ti/Au gates were deposited. Devices were measured at room temperature and up to 300°C. 5x5 mm pieces were co-loaded during growth, and Hall measurements were taken on these from room temperature to 500°C.

### Results and Discussion

Temperature-dependent TLM and Hall measurements indicated a reduction in channel resistance with increasing temperature, attributed to enhanced carrier density and mobility. TLM measurements demonstrate ohmic behavior at all temperatures. The device presented has a peak drain current density of 0.12 mA/mm at room temperature and 0.8 mA/mm at 300 °C. Transconductance also increased from 53  $\mu\text{S}/\text{mm}$  at room temperature to 262  $\mu\text{S}/\text{mm}$  at 300 °C. The device recovers its performance completely after returning to room temperature from 300°C with no degradation in current. This work shows a framework for forming robust ohmic contacts to AlGaN channel devices.

### Acknowledgement

This work was supported by DARPA (Award #HR0011-24-2-0332) and ARO (Award # W911NF-22-2-0176).



### References

- [1] J. Chen *et al.*, *IEEE Electron Device Lett.* vol. 46, no. 4, 545-548 (Apr. 2025)
- [2] T. Nanjo *et al.*, *IEEE Trans. Electron Devices* vol. 60, no. 3, 1046-1053 (Mar. 2013)
- [3] J.Y. Tsao *et al.*, *Adv. Elec. Mater.* Vol. 4, 1600501 (Dec. 2017)