

Bias- and Temperature-Induced On-State Resistance Degradation in 650 V p-GaN HEMTs

Renze Yu¹, Saeed Jahdi¹ and Martin Kuball²

¹ School of Electrical, Electronic and Mechanical Engineering, University of Bristol, UK

² School of Physics, University of Bristol, UK

renze.yu@bristol.ac.uk

Introduction

Gallium Nitride (GaN) High Electron Mobility Transistors (HEMTs) facilitate the development of power electronic systems with higher efficiency, faster switching, and reduced size [1]. To realise normally-off operation, essential for safe and practical circuit design, a p-GaN gate structure is typically introduced between the gate electrode and the AlGaN barrier. However, the stability of the p-GaN HEMT devices remains a major challenge, particularly under both positive and negative gate stress and elevated temperatures [2]. In this work, p-GaN gate HEMTs were subjected to controlled positive and negative gate bias stress across a wide temperature range in a thermal chamber. The study focuses on quantifying the variation of on-state resistance (R_{on}) under these conditions, and aims at providing deeper insight into the reliability and performance limits of p-GaN gate HEMTs in practical operating environments.

Experimental Procedures

The devices under test are Schottky p-GaN gate HEMTs (GPI65015DFN, 650 V/85 mΩ/15 A). A measurement-stress-measurement sequence was employed to evaluate the device performance. The devices were placed in a thermal chamber (TAS LTCL600) and tested over a temperature range of -50 °C to 150 °C in 25 °C increments. The gate-source voltages (V_{gs}) were 6 V and -10 V for positive and negative gate bias stress tests, respectively, within the operating range of the GaN HEMT devices. The variation of R_{on} was characterised using a source measuring unit (B2902A) after 1 ms, 10 ms, 100 ms, 1 sec, 10 sec, 50 sec, 100 sec, 500 sec, and 1000 sec of stressing time. During characterisation, V_{gs} was swept from 0-6 V, while the drain-source voltage (V_{ds}) was kept at 0.1 V.

Results and Discussion

The test results under different stress conditions are shown in Figure 1. Under positive gate bias, R_{on} decreased relative to the initial value, whereas negative gate bias led to a pronounced increase. At subzero temperatures, the drift in R_{on} was minimal. However, with increasing temperature, the rate and magnitude of variation became more significant. At the highest test condition of 150 °C, the reduction of R_{on} under positive gate bias may lead to increased power dissipation and potential thermal runaway due to positive feedback. In contrast, negative bias stress caused R_{on} to increase by 28.24%, which is detrimental to the efficiency of power electronic systems in application.

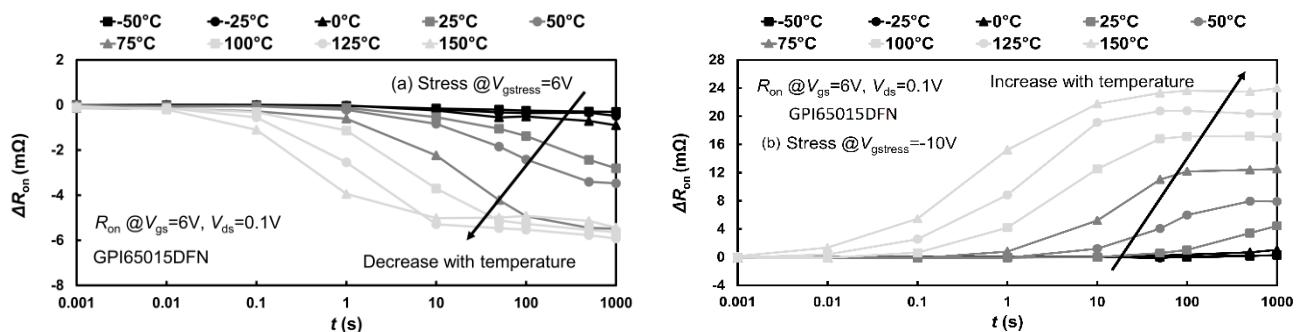


Figure 1. Drifts of R_{on} under positive and negative gate bias stress under different temperatures.

Acknowledgement

The authors acknowledge support from the Adopting Sustainable Partnerships for Innovative Research Ecosystem (ASPIRE) research program as well as the EPSRC “Transforming Net Zero with Ultrawide Bandgap Semiconductor Device Technology (REWIRE)” under grant number EP/Z531091/1.

References

- [1] L. Gill, S. DasGupta, J. C. Neely, R. J. Kaplar and A. J. Michaels, IEEE Transactions on Power Electronics, 39 (1), 517-537,(2024)
- [2] Z. Jiang, L. Li, C. Wang, J. Zhao and M. Hua, IEEE Transactions on Electron Devices, 69 (7), 3654-3659, (2022)