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Introduction

Wireless power transfer is moving from research to application, with potential uses in electric and autonomous
underwater vehicles. Low-power applications, such as automatic guided vehicles and electric scooters, mainly use
inductive power transfer in the kHz band, but challenges remain, including foreign matter tolerance and the cost of litz
wires and cores. Capacitive power transfer (CPT) has been proposed as an alternative; although historically inefficient
at kHz, recent GaN and SiC devices enable MHz operation with reduced losses and higher power.

For MHz CPT systems, inductors in the compensation network dominate losses and size. Core-type inductors are
compact but suffer from core loss and saturation, while air-core inductors avoid these issues but radiate strongly and
are bulky. Several compensation topologies, including multi-stage LC filters and voltage-limiting networks, have been
investigated to address these trade-offs. However, a unified criterion for determining the optimal topology has not yet
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. Figure 1 Circuit configuration of proposed capacitive power transfer
and supports the design of low-loss,

compact CPT systems.
Relation Between Efficiency and Compensation Network

There is a relation between the efficiency of the compensation network and the distance on the Smith chart
(Poincaré length), as given in (1). Here, n represents the compensation efficiency, Q is the quality factor of the
component, and 4 is the hyperbolic length of the path on the Smith chart, which is defined in (2)!!.
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Figure 1 shows the circuit configuration of the CPT system,
where multiple stages of L-type compensation networks are

implemented on both the transmitting and receiving sides!?!.
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Figure 2 illustrates the trajectory on the Smith chart when
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