

Snow Passage Effects on Open Cross-Flow Turbine Performance

Kotaro Takamure^{1,2}, Eiichi Satou³, Toshihiko Ikeda⁴, Tomomi Uchiyama², Tomoko Okayama⁵, Tomoaki Miyazawa⁴, Daisuke Tsunashima⁶, Tomohiro Degawa², Keigo Sasaki⁷, Kumiko Nagase⁷

¹Graduate School of Science and Engineering, Akita University,

²Institute of Materials and Systems for Sustainability, Nagoya University,

³Faculty of Engineering, Niigata Institute of Technology,

⁴Faculty of Engineering, Shinshu University,

⁵Faculty of Regional Development, Taisho University,

⁶Chuetsu Kogyo Inc.,

⁷Core Links LLC, 201

takamure@gipc.akita-u.ac.jp

Abstract

Small-scale hydraulic power generation is gaining attention as a decentralized energy source with low environmental impact and high disaster resilience. In Japan, snow accumulation in cold regions can be carried downstream, affecting microhydraulic turbine performance. This study conducted field experiments using spherical snowballs to simulate these effects, aiming to develop a highly efficient open-type cross-flow turbine with reduced sensitivity to snowball interference (Figure 1). A snowball was introduced upstream, and power fluctuations and snowball behavior were observed. Results showed that when the snowball diameter matched the rotor blade spacing, power output briefly dropped but quickly recovered. However, larger snowballs caused a sharp decline, with varying recovery times. Compression, fragmentation, and discharge of snowballs by the blades contributed to output fluctuations. These findings offer insights for designing microhydraulic turbines resilient to snow and ice.

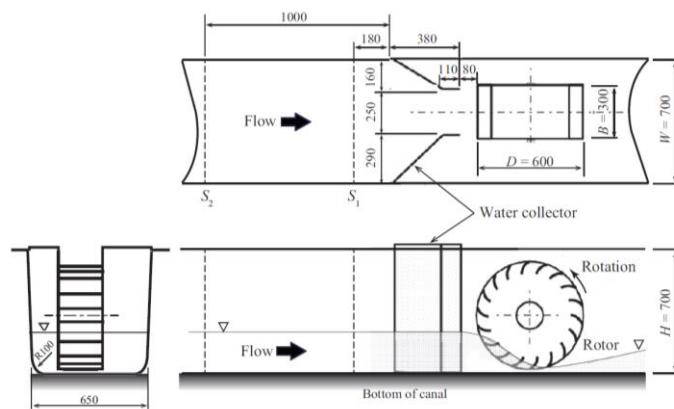


Figure 1 Geometry and dimensions of the open-type cross-flow hydraulic turbine

Acknowledgement

This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number 24K15392.