

Interface Structures and Electrical Properties of Epitaxial Ca-Digermanide/n-Ge (111) Contacts

Ryoma Yukitake¹, Shigehisa Shibayama¹, Mitsuo Sakashita¹, Masashi Kurosawa¹, and Osamu Nakatsuka^{1,2}
 (1. Grad. Sch. of Eng., Nagoya Univ., 2. IMaSS, Nagoya Univ.)
 shibayama.shigehisa.u6@f.mail.nagoya-u.ac.jp

Introduction

Germanium (Ge), which is a group-IV semiconductor, is a promising channel material for high performance advanced CMOS because of their higher electron and hole mobilities. However, reducing the contact resistance of metal/n-Ge interface is still a foremost issue owing to the strong Fermi level pinning phenomenon at the valence band maximum edge of Ge [1], which causes a quite large Schottky barrier height (SBH) at the metal/n-Ge interface.

To reduce SBH, some approaches have been proposed e.g., interlayer insertion [1], epitaxial interface [2], and Van-der-Wals interface [3]. Among them, we have addressed epitaxial metal-germanide/n-Ge contact with using a lower work function metal. Previously, we demonstrated a significant SBH reduction in epitaxial-HfGe₂/n-Ge(001) contact, and suppressing strain relaxation may be effective for the further SBH reduction until to 0.31 eV [4].

Toward the further SBH reduction, in this study, we focused on CaGe₂ because CaGe₂ shows a lower work function, and the smaller lattice mismatch to Ge (~1.4 %) than HfGe₂. The epitaxial growth of CaGe₂ on Ge(111) has been already developed in other studies [5]. However, the device fabrication using CaGe₂ is beset due to its structural instability to atmosphere exposure and water immersion. In this study, we proposed the fabrication method of Schottky barrier diodes (SBDs) of CaGe₂/n-Ge(111) contact and discussed their electrical properties featuring the impact of the interface quality.

CaGe₂ growth and SBDs fabrication

First, n-Ge(111) wafer (resistivity of 7.9 Ω·cm, impurity concentration of $\sim 10^{15}$ cm⁻³) was prepared as a substrate. After chemical cleaning of a diluted HF (~1%) solution and deionized water, a 20-nm-thick CaGe₂ layer were epitaxially grown by solid source molecular beam epitaxy method at various growth temperatures, T_g of 520–620 °C. As a reference, an amorphous CaGe₂ layer was also prepared at T_g of room temperature (RT). The sample was taken out and immediately introduced into Al evaporation chamber. Then, blanket Al layer was deposited by vacuum evaporation method as a cap layer. Subsequently, circle shaped patterns were formed by photolithography and chemical etching of Al and CaGe₂ layers by diluted HF (~1%) and H₂O₂, respectively. Finally, Al backside electrode was also formed by vacuum evaporation method.

Figure 1: Schematics of SBD fabrication process.

Results and discussions

Figure 2 shows the current density-voltage ($J-V$) characteristic of the fabricated SBDs measured at RT. Note the result of the sample without CaGe₂ layer was also shown as a reference. Al/n-Ge(111) and Al/amorphous-CaGe₂/n-Ge(111) SBDs showed clear Schottky properties with a reverse current density of 10^{-2} A/cm² at voltage of -1 V. On the contrary, we can observe a clear increase in a reverse current density by introducing epitaxial CaGe₂ layer, inferring the SBH decrease.

Furthermore, we found that T_g increase results in much increase in a reverse current density and Ohmic characteristics were obtained in T_g of 580 and 620 °C. For the sample with T_g of 560 °C, SBH value was estimated to 0.17 eV via the temperature dependence of $J-V$ characteristics. This is much lower than our previous study of HfGe₂/n-Ge(001) contact; 0.31 eV. Although the fabricated SBDs still include leakage currents, the obtained results would support the concept for the SBH reduction to use the epitaxial contact using a low work function metal. In the presentation we will also discuss linkage between SBH reduction and interface quality of CaGe₂/n-Ge contact.

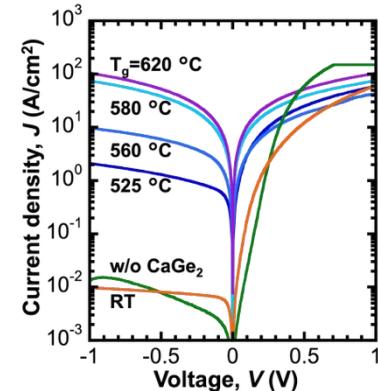


Figure 2: $J-V$ characteristics measured at RT for the Al/CaGe₂/Ge/Al SBDs.

Conclusion

This study explored the electrical characteristics of CaGe₂/n-Ge(111) contact. We obtained Ohmic characteristics for the sample grown at higher T_g . The results obtained in this study would support the concept for the SBH reduction to use the epitaxial contact using a low work function metal.

Acknowledgement

This study was partly supported by JSPS Grant-in-Aid for Transformative Research Areas (B) (No. 24H00850) and JST-CREST (JPMJCR21C2).

References

[1] T. Nishimura *et al.*, Appl. Phys. Express **1**, 051406 (2008). [2] O. Nakatsuka *et al.*, Microelectronic Eng. **83**, 2272 (2006). [3] W. H. Chang *et al.*, APL Materials **13**, 071117 (2025). [4] K. Kasahara *et al.*, Electron devices Society **10**, 744 (2022). [5] K. Okada *et al.*, Mater. Sci. Semicond. Proc. **161**, 107462 (2023).