

High-Resolution Characterization of Dislocations in GaN Substrates using Synchrotron X-ray Topography

Masakazu Kanechika¹, Satoshi Yamaguchi², Yoshihiro Kishida², and Kazuhisa Isegawa²

¹IMaSS, Nagoya University,

²Toyota Central R&D Labs., Inc.

kanechika.masakazu.z0@f.mail.nagoya-u.ac.jp

Introduction

Gallium nitride (GaN) is a promising material for next-generation power devices. Commercial GaN substrates contain many dislocations that cause device degradation [1]. Back-reflection X-ray topography using synchrotron radiation is a powerful tool as it reveals dislocations across the entire substrate over a short period of time and successfully provides clear images with detailed information on the types and positions of dislocations.

Until now, such topography images have mainly been recorded using X-ray films and nuclear emulsion plates as analogs to meet the requirement for high resolution (below 1 $\mu\text{m}/\text{pixel}$). The recent progress in high-resolution X-ray cameras has enabled high-resolution digital topography images. In this study, we compared digital and analog images using nuclear emulsion plate methods.

Experimental Procedures

We used ammonothermally grown *n*-type GaN substrates for this study. To obtain high-resolution X-ray topography images, we employed synchrotron radiation from beamline BL16B2 at SPring-8. We selected 1124 diffraction vectors. The X-ray camera prepared in this beamline is characterized by both low and high magnitudes, with a resolution of 3.76 $\mu\text{m}/\text{px}$ and 0.723 $\mu\text{m}/\text{px}$, respectively.

Results and Discussion

Figure 1 (a) and (b) show the topography images which were recorded using the high-magnitude X-ray camera and nuclear emulsion plate, respectively. Spots were identified across both images. Because the spot size depends on the Burgers vector of the dislocation [2], the smaller spot corresponds to an edge dislocation, while the larger spot corresponds to a mixed or screw dislocation. An X-ray camera has a deep dynamic range and enables real-time observations. In contrast, observations with nuclear emulsion plates provide a wide field of view for a short duration. In future work, we will examine the merits of the two recording methods and their application across our research aims.

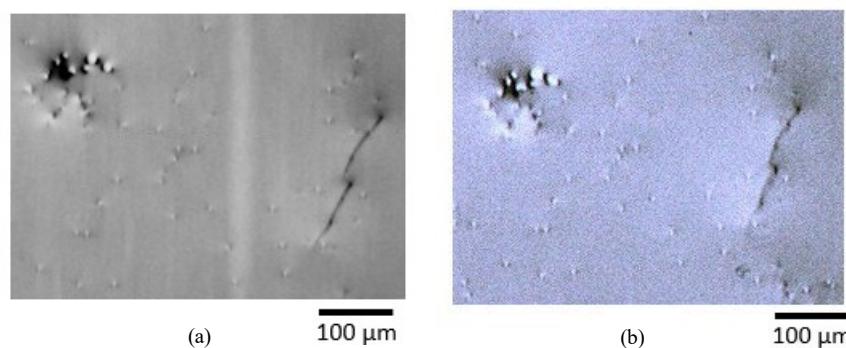


Figure 1 X-ray topography images (a): by X-ray camera. (b): by nuclear emulsion plate.

Acknowledgements

The authors thank Prof. Morishima, Dr. Kitagawa, and Dr. Naganawa of Nagoya University for providing the nuclear emulsion plates. We also thank Dr. Kajiwara of JASRI for supporting the topography images with an X-ray camera. We would like to thank Editage (www.editage.jp) for English language editing.

References

- [1] T. Narita *et al.*, *Sci Rep.* 12, 1458 (2022)
- [2] M. Kanechika *et al.*, *Jpn. J. Appl. Phys.* 64, 031001 (2025)