

γ -Ga₂O₃ supported by α -Ga₂O₃ as a photocatalyst for CO₂ reduction with water

Kosuke Kawai¹, Naoto Ota², Shigeo Arai³, Muneaki Yamamoto³, Tetsuo Tanabe¹ and Tomoko Yoshida^{1,3}

¹Graduate School of Engineering, Nagoya University,

²Graduate School of Engineering, Osaka Metropolitan University,

³Institute of Materials and Systems for Sustainability, Nagoya University

kawai.kosuke.u1@s.mail.nagoya-u.ac.jp

Introduction

Ga₂O₃ has been attracting attention as a photocatalyst for the reduction of CO₂ with water. In most of previous studies, Ag has been employed as a co-catalyst^[1, 2]. In our previous works, we have successfully synthesized Ga₂O₃ photocatalysts consisting of mixed phases of α and γ ^[3], and β and γ ^[4] which exhibit high activity without the co-catalyst. However, the cause of their high activity remains unclear partly because the mixing ratio of the two phases is difficult to control. Here, we have synthesized γ -Ga₂O₃ supported by α -Ga₂O₃ (γ -Ga₂O₃/ α -Ga₂O₃) with different ratios of α and γ phases and evaluated their photocatalytic activity to investigate the cause of the high activity.

Experimental Procedures

γ -Ga₂O₃/ α -Ga₂O₃ photocatalysts were synthesized by the impregnation method. Ga(NO₃)₃·8H₂O was dissolved in distilled water, and α -Ga₂O₃ powder was dispersed in the solution. The mixture was heated with stirring to dryness and then calcined at 723 K for 4 h. The ratio of α and γ phases was controlled by varying the amounts of α -Ga₂O₃ and Ga(NO₃)₃·8H₂O. The photocatalytic CO₂ reduction with water was conducted using these catalysts and the generated gases were quantified by gas chromatography. The catalysts were characterized by XRD, TEM, and XAFS.

Results and Discussion

Fig. 1 shows the XRD patterns of (a) γ -Ga₂O₃/ α -Ga₂O₃ with the γ phase content of 60%, (b) α -Ga₂O₃, (c) the difference pattern obtained by subtracting (b) from (a), and (d) the reference pattern of γ -Ga₂O₃. The difference pattern exhibits broad peaks corresponding to the reference pattern of γ -Ga₂O₃ without contributions from other phases. This indicates that γ -Ga₂O₃/ α -Ga₂O₃ consists of well-crystallized α phase and poorly-crystallized γ phase.

Fig. 2 shows changes in H₂ and CO production rates as a function of γ phase content. H₂ production rate decreased with increasing the γ phase content, indicating that the H₂ production was dominated by the α phase. High CO production rates were observed for samples containing 60%-80% of the γ phase, while the production rate decreased in the γ phase-dominated samples. Although γ phase has been reported to adsorb CO₂ effectively^[3], the observed higher CO production rate could not be attributed to high CO₂ adsorption alone.

Considering our previous work on mixed phases of α -Ga₂O₃ and γ -Ga₂O₃ photocatalysts, this work clarifies that CO production proceeds via a mechanism in which H predominantly generated on the α phase migrates to the γ phase and reduces the adsorbed CO₂.

Acknowledgement

This work was supported by JST, CREST Grant Number JP24031877 and JSPS KAKENHI Grant Number JP20KK0116, Japan.

References

- [1] N. Yamamoto *et al.*, *E-j. surf. sci. nanotechnol.* **12**, 263-268 (2014) [2] M. Yamamoto *et al.*, *J. Mater. Chem. A* **3**, 16810-16816 (2015)
- [3] N. Ota *et al.*, *J. Mater. Chem. A* **13**, 6663-6671(2025) [4] M. Akatsuka *et al.*, *Appl. Catal. B Environ.* **262**, 118247(2020)

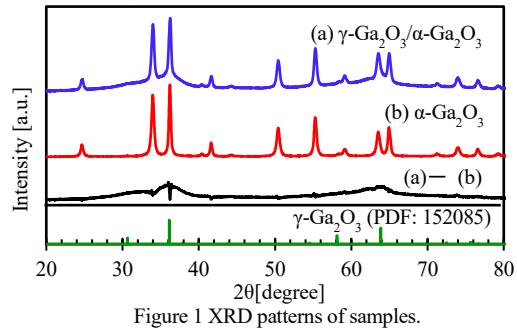


Figure 1 XRD patterns of samples.

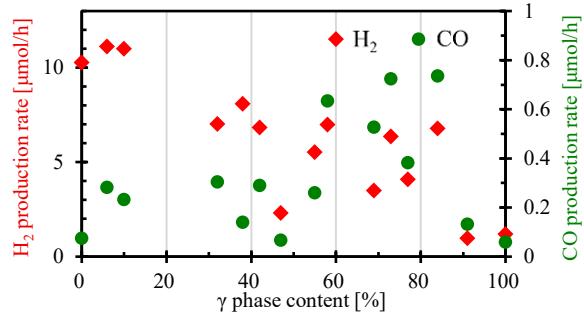


Figure 2 Production rates of H₂ and CO plotted against the γ phase contents of the γ -Ga₂O₃/ α -Ga₂O₃.