

Ferroelectricity in $\text{CsPb}_2\text{Nb}_3\text{O}_{10}$ and Exfoliated 2D Nanosheets

Y. Li¹, M. Shimada², M. Kobayashi^{1,2}, E. Yamamoto^{1,2}, R. Canton-Vitoria^{1,3}, and M. Osada*^{1,2,4}

¹ Institute of Materials and Systems for Sustainability (IMaSS), Nagoya University

² Department of Materials Chemistry, Nagoya University,

³ Joining and Welding Research Institute, The University of Osaka,

⁴ Research Institute for Quantum and Chemical Innovation, Institutes of Innovation for Future Society, Nagoya University

mosada@imass.nagoya-u.ac.jp

Introduction

Lead (Pb) is a pivotal element for ferroelectric materials. While Bi-based Aurivillius and Dion–Jacobson (DJ) phases have been widely explored as Pb-free alternatives, Pb-based layered perovskites remain underdeveloped. In particular, the DJ-type layered compound $\text{CsPb}_2\text{Nb}_3\text{O}_{10}$, first reported in 1988, has yet to be established as a ferroelectric material, despite its promising crystal structure [1]. Notably, $\text{CsPb}_2\text{Nb}_3\text{O}_{10}$ can be readily exfoliated into monolayer nanosheets of $\text{Pb}_2\text{Nb}_3\text{O}_{10}$ [2], offering opportunities for 2D ferroelectricity. In this work, we report for the first time the ferroelectric properties of the layered perovskite $\text{CsPb}_2\text{Nb}_3\text{O}_{10}$ and its exfoliated nanosheets [3,4]. This work expands the design landscape of layered ferroelectrics and underscores the impact of dimensional reduction on polarization stability in 2D systems.

Experimental Procedures

The layered perovskite $\text{CsPb}_2\text{Nb}_3\text{O}_{10}$ was synthesized by solid-state reaction. The structural and morphological characteristics were determined by XRD, SEM-EDS, and Raman measurements. Bulk ferroelectric behavior was confirmed by polarization–electric field (P–E) hysteresis loops and strain–electric field (S–E) curves. For ultrathin studies, the bulk system $\text{CsPb}_2\text{Nb}_3\text{O}_{10}$ was exfoliated into monolayer nanosheets by exchanging the interlayer cations Cs^+ with H^+ , resulting in the extended interlayer distance, followed by intercalation with TBA^+ and mechanical shear from handshaking. The topography and height of the nanosheets were observed by AFM measurement, while the typical ferroelectric behavior was characterized by PFM measurements.

Results and Discussion

$\text{CsPb}_2\text{Nb}_3\text{O}_{10}$ crystallizes in a tetragonal system with a polar space group $P4mm$, as confirmed by both single-crystal and powder XRD analyses. SEM reveals a typical plate-like morphology. The spontaneous polarization was estimated as $7.93 \mu\text{C cm}^{-2}$, with a Curie temperature of 260°C . Exfoliated nanosheets exhibit a thickness of 1.8 nm , corresponding to a single perovskite layer. PFM measurements display a characteristic butterfly-shaped amplitude–voltage loop and a $\sim 120^\circ$ phase reversal, indicating robust ferroelectricity. Additionally, PFM lithography with a box-in-box bias reveals a distinct phase contrast reversal, further confirming reversible polarization switching. These results deepen our understanding of ferroelectricity in layered perovskites and highlight the potential of 2D ferroelectric materials.

References

- [1] M. A. Subramanian, J. Gopalakrishnan and A. W. Sleight, Mater. Res. Bull., 23, 837-842 (1988).
- [2] Y. Hu and L. Guo, ChemCatChem, 7, 584-587 (2015).
- [3] Y. Li, M. Shimada, M. Kobayashi, E. Yamamoto, R. Canton-Vitoria, X. Liu, and M. Osada, Dalton Trans., 53, 18122-18127 (2024).
- [4] M. Shimada, Y. Li, M. Kobayashi, E. Yamamoto, R. Canton-Vitoria, and M. Osada, Chem. Lett., 54, upaf006 (2025).

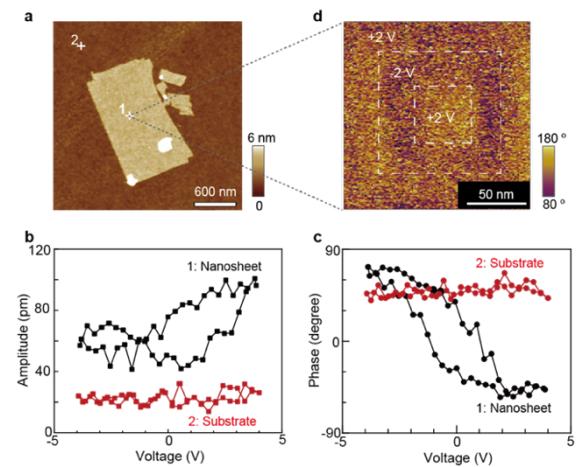


Figure 1. PFM measurements of $\text{Pb}_2\text{Nb}_3\text{O}_{10}$ nanosheet. (a) AFM image of a $\text{Pb}_2\text{Nb}_3\text{O}_{10}$ nanosheet on a Pt substrate. (b) PFM amplitudes and (c) phase signals from the nanosheet and the Pt substrate. (d) PFM lithography taken after writing a box-in-box pattern with reversed DC bias.