

Photocatalytic water vapor dissociation using hydrophilic cocatalyst with β -Ga₂O₃

Y. Tsukamoto¹, N. Ota², K. Hamada³, K. Fujita⁴, Y. Matsuo⁴, H. Yoshida³, T. Tanabe¹, M. Yamamoto⁵, T. Yoshida¹

¹Department of Applied Energy, Graduated School of Engineering, Nagoya Univ.,

²Department of Chemistry and Bioengineering, Graduated School of Engineering, Osaka Metropolitan Univ.,

³Graduated School of Human and Environmental Studies, Kyoto Univ.,

⁴Honda R&D Co., Ltd.

⁵Institute of Materials and Systems for Sustainability, Nagoya Univ.

tyoshida@energy.nagoya-u.ac.jp

Introduction

Ga₂O₃ is known as a photocatalyst for evolution of H₂ and O₂ by water splitting. Usually, photocatalytic water splitting is conducted in water liquid with the photocatalyst dispersed. However, photocatalytic activity often decreases since water absorbs UV light.^[1] Recently, instead of water splitting, water vapor dissociation system is being developed. In water vapor, the number of H₂O molecules surrounding photocatalysts are limited, so the evolution amount of H₂ is limited too. In this research, we have employed the cocatalyst of MgO having a hydrophilic character mixed with β -Ga₂O₃ photocatalyst. We conducted photocatalytic water vapor dissociation and investigated the effects of MgO mixing methods and ratios on photocatalytic activity.

Experimental Procedures

Three types of photocatalyst samples were prepared. They were the simple mixture sample (MgO & β -Ga₂O₃), the supported samples (MgO/ β -Ga₂O₃), and the composite sample (MgGa₂O₄).

The H₂ evolution from water vapor was conducted in the water-vapor system as follows. The photocatalyst sample of 0.2 g was inserted into a quartz reactor with 1 mL deionized water and dried at 353 K. Next, the water vapor was introduced by bubbling Ar gas through water with the flow rate of 5 mL/min. The UV light given by a Xe lamp through the UV cold mirror was illuminated with the light intensity of 23 mW/cm² at 254±10 nm. The reaction products were analyzed quantitatively by a TCD gas chromatograph.

Results and Discussion

XRD analysis showed that the simple mixture sample and the supported samples consisted of MgO and β -Ga₂O₃ without any other compounds, while the composite sample was converted to MgGa₂O₄ as each substances reacted.

In the reaction tests, the simple mixture and supported samples exhibited high photocatalytic activity, while the composite sample had poor activity. Among them, the supported sample mixed with 50 mol% MgO initially showed lower activity, but the activity increased with time and finally showed the highest activity.

Figure 1 shows Mg K-edge XANES spectra of 50 mol% MgO supported sample before and after the reaction, MgO and Mg(OH)₂. It was revealed that in 50 mol% MgO supported sample, most of the MgO phase was converted to Mg(OH)₂ phase. This result suggests that the hydroxyl groups generated by the hydroxylation of MgO adsorbed H₂O concentration surrounding β -Ga₂O₃ photocatalyst. Therefore, photocatalytic activity of the 50 mol% MgO supported sample is very likely promoted by the electron excitation in the β -Ga₂O₃ and the water vapor dissociation on Mg(OH)₂, showing the highest activity.

Acknowledgement

This work was supported by JST, CREST Grant Number JP24031877 and KAKENHI Grant Number JP20KK0116, Japan.

References

[1] T. Sugano, F. Kishimoto, and K. Takanabe, *Energy Frels*, **36**, 8978-8994 (2022)

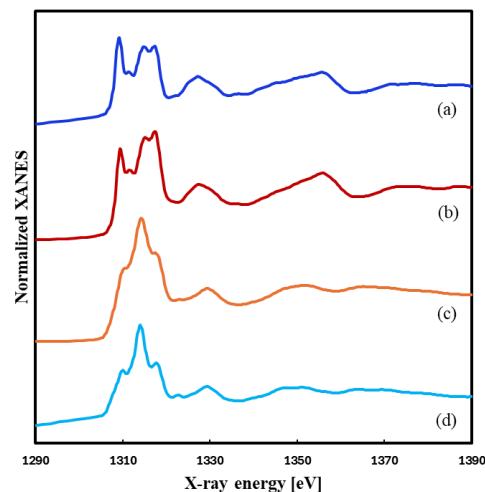


Figure 1 Mg K-edge XANES spectra of (s) MgO, (b) 50 mol% MgO supported sample, (c) 50 mol% MgO supported sample after the reaction, and (d) Mg(OH)₂.