

Beryllium Acceptor States in Aluminum Nitride by Cathodoluminescence Analysis

Yingying Lin¹, Jia Wang², Wentao Cai³, Haitao Wang³, Maki Kushimoto⁴, Yoshio Honda³, Hiroshi Amano^{2,3}

¹Deep Tech Serial Innovation Center, Nagoya University, Nagoya, Japan

²Institute for Advanced Research, Nagoya University, Nagoya, Japan

³Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, Japan

⁴Department of Electronics, Nagoya University, Nagoya, Japan

lin.yingying.u9@f.mail.nagoya-u.ac.jp

Introduction

Acceptor states in AlN have attracted significant interest due to their critical role in the modulation of p-type conductivity. Recently, Ishii et al.[1] reexamined the Mg acceptor binding energy in AlN using photoluminescence (PL) measurements, revealing a significant shallower energy than previously theorized. Be, another potential acceptor when substituting Al sites, has received limited attention, with few experimental data available on its acceptor binding energy in AlN.

Experimental Procedures

In this study, Be-doped AlN was prepared by implanting Be ions into unintentionally doped AlN epitaxial layers via metalorganic vapor phase epitaxy (MOVPE) on sapphire substrates, followed by rapid thermal annealing at 1300 °C for 20 minutes. Secondary ion mass spectrometry (SIMS) analysis confirmed a bulk Be concentration of $\sim 10^{19} \text{ cm}^{-3}$. Temperature-dependent cathodoluminescence (CL) spectroscopy was primarily employed to probe the optical properties of the doped material. X-ray diffraction (XRD) was used to measure the lattice parameters and strain values.

Results and Discussion

A sharp emission at 6.077 eV is attributed to the neutral Be-bound exciton (Be⁰X), with a corresponding binding energy of 44 meV. Two additional lower-energy peaks are identified as the first and second longitudinal optical phonon replicas of the Be⁰X transition. A +26 meV blue shift of the free exciton transition was observed relative to literature values, and XRD analysis confirmed that the AlN/sapphire heterostructure is under biaxial compressive strain ($\epsilon_a = -0.370\%$), which is consistent with reports that compressive stress increases the bandgap and in reasonable agreement with stress-based energy shift calculations. Temperature-dependent CL measurements reveal thermal quenching of the Be⁰X emission, with activation energies of 8.8 meV and 67 meV, corresponding to exciton delocalization and ionization, respectively. This work demonstrates, for the first time, the feasibility of Be incorporation by ion implantation and provides direct optical evidence of Be-related acceptor states in AlN, providing valuable insight into p-type doping strategies for ultrawide-bandgap semiconductors.

Acknowledgement

This work was supported by the Japan Science and Technology Agency (JST) under the Adopting Sustainable Partnerships for Innovative Research Ecosystem (ASPIRE) program (Grant No. JPMJAP2311), the Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research (KAKENHI, Grant No. JP22H00213), and the Young Researchers Activation Support Project of the Center for Integrated Research of Future Electronics (CIRFE), Nagoya University.

References

[1] Ishii, R., Yoshikawa, A., Funato, M., & Kawakami, Y. (2023). Revisiting the substitutional Mg acceptor binding energy of AlN. *Physical Review B*, *108*(3), 035205.

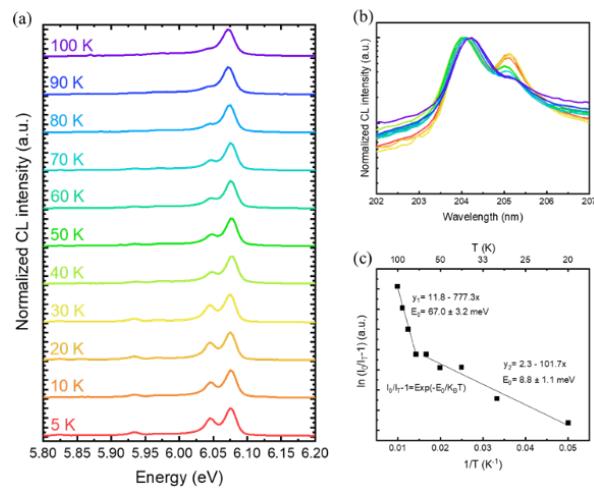


Figure 1 (a) Temperature-dependent CL spectra of Be-doped AlN from 5 K to 100 K. (b) Magnified view of the CL spectra. (c) Arrhenius analysis of the Be⁰X integrated intensity,