Tsugumi Kato, Takayoshi Hara*, Nobuyuki Ichikuni

Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University

E-mail: t_hara@faculty.chiba-u.jp (Takayoshi Hara)

Insight into Structural Change of Ni(II)-Al(III) Layered Double Hydroxide under Heat Treatment: Design of NiO-Al₂O₃ Nanocomposite Catalysts toward Hydrogen Transfer Reaction of Furfural

In this study, a Ni₂AlO_T catalyst derived from the calcination at T K of CO₃²⁻/Ni₂Al LDH, obtained by the hydrothermal method using urea,[1] was synthesized. To clarify the structural change of CO₃²⁻/Ni₂Al LDH during calcination, temperature-programmed synchrotron XRD, TG-DTA, and Ni K-edge XANES (Fig. 1) were obtained under the same heating conditions (rate: 10 K/min). XRD data revealed the Ni₂AlO_T catalyst (T \geq 673 K) was mainly composed of small sized NiO species and amorphous Al₂O₃. In addition, the decomposition of the hydroxide nanosheets into NiO species around 653 K was also confirmed. The Ni₂AlO_T catalysts were applied to hydrogen transfer reaction of furfural with 2-propanol (Table 1). The yield of furfuryl alcohol increased with increasing calcination temperature. From the H₂-TPR measurements, it was found that a highly stable NiO species against the reduction into Ni(0) was generated on the Ni₂AlO T matrix by the calcination at high temperature.

Fig. 1 Normalized Ni K-edge XANES for the CO₃²⁻/Ni₂Al LDH as a function of temperature programmed calcination (10 K/min) under air flow

Table 1. Results of hydrogen transfer reaction of furfural with 2-propanol $^{\rm a}$

0	CHO +	OH Catalyst (0. 393 K, 3	<u> </u>	CH ₂ OH ,	·
	Entry	Catalyst	Conv. (%)	Yield (%)b	
	1	Blank		n.d.	
	2	NiO	10	n.d.	
	3	Ni ₂ AIO_673	35	35	
	4	Ni ₂ AIO_773	32	32	
	5	Ni ₂ AIO_873	44	44	
	6	Ni ₂ AIO_973	43	43	
	7	Ni ₂ AIO_1073	45	45	
	8	Ni _s AIO 1173	51	51	

^aCatalyst (0.1 g), furfural (1 mmol), 2-propanol (5 mL), 373 K, 3 h. ^bDetermined by GC using internal standard technique.

1) R. Sasai, et al., Bull. Chem. Soc. Jpn., 95, 802-812 (2022).