PROCEEDINGS OF THE INTERNATIONAL DISPLAY WORKSHOPS, VOL.29, 2022

PRJ1-2

Real-time 3D Space Reconstruction for OT Metaverse as Interactive
Virtual Site

Keiichi MITANI!, Kazuyuki TAJIMA!, and Yusuke NAKAMURA!

keiichi.mitani.jj@hitachi.com
ICenter for Digital Services — Instrumentation Hitachi, Ltd. Research & Development Group
Keywords: Real-time, Point cloud, Surface reconstruction, Metaverse, Boolean

ABSTRACT

We developed a platform for real-time 3D digitization of a
work site and a method for high-quality, fast 3D-geometry
modeling are proposed. It was confirmed that the platform
works in real time, less than the target specification of 1 second,
and the proposed modeling method is faster and robust than
conventional methods.

1 INTRODUCTION

Many studies have tried to create a so-called “cyber physical
system” (CPS), which simulates any phenomenon in
cyberspace by digitizing physical information in the real world
and feeding back the results to the real world [1]. In recent years,
a CPS as a “metaverse,” in to which people can enter and
interact with each other, has been actively researched [2].
Distance-measuring technology has also advanced, and low-
cost distance-measuring sensors have become abundant. For
example, a ranging sensor can digitize and reconstruct in 3D
the on-site space that exists within the area of its measurement
range.

Supposing support of on-site work remotely as a use case,
we aim to enable remote skilled engineers to provide supportto
on-site workers in a natural manner. In particular, we want to
improve the quality of work support by providing a realistic
“metaverse space” of the work site. The space is generated by
using multiple ranging sensors installed at the site and modeling
its main elements as 3D geometry data, which allows remote
users to interact with objects at the site via the metaverse space.
However, to allow users to interact with each other via objects,
real-time modeling is necessary. Moreover, when the user is
immersed in the metaverse space and approaching objects
modelled as 3D geometry data, it is necessary to maintain a
resolution that allows the user to view the object data
sufficiently. In this study, we built a platform for real-time 3D
digitization of the site and devised a method for improving
reality and generating 3D-geometry data structures at high
speed.

2 REAL-TIME 3D RECONSTRUCTION OF A WORK
SITE

2.1 Platform Configuration

The developed platform converts the site space into 3D-
point-cloud data, which can be monitored from remote
applications by a user at a free viewpoint. The main functional
blocks that operate on the platform are shown in Figure 1.

ISSN-L 1883-2490/29/0722 © 2022 ITE and SID

User input reception
Data visualization

3D data processings

¥ 3D data

1: =

3D data genarating
-
RGB Depth
szl - :’-W€" =
Data transmission | . 7 .k .
@ = e
& Data converting e 2
E ala convertmg F.’(k o
Data extraction || § [7

Fig. 1: Functional blocks of the platform

The platform is divided into three layers: “edge” extracts
data frames from multiple ranging sensors installed in the site
space and converts them into color and depth images; “server”
converts color and depth images into 3D-point-cloud data and
stores them; and “app” generates free-viewpoint images for the
user to view by referring to the 3D-point-cloud data within the
necessary range. The edge, server, and app environments were
built separately, and data can be exchanged between them via
the WebSocket protocol, which is lightweight and allow users
to define their own formats. In the 3D-point-cloud data
maintained by the server layer, dynamic regions change from
moment to moment, and static regions remain unchanged for
long periods of time. As for the static regions, it is inefficient
from both practical and bandwidth-intensive standpoints to
transmit and update 3D-point-cloud data constantly;
accordingly, the data is scanned in advance, compressed, and
stored in external storage.

The hardware used in the experiment is listed in Table 1.
Connected to the edge layer, Intel RealSense LiDAR cameras
(L515) were used as the sensors. Their resolution is 1280 x 720
for color images and 1024 x 768 for depth images.

Table 1. Hardware configuration

Layer CPU

Edge 6 cores, 8 GB RAM
Server 8 cores, 32 GB RAM
App 10 cores, 64 GB RAM

2.2 3D Dynamic Surface Reconstruction
Views of the subject in the application seen from (a) far and

IDW '22

(b) near are shown in Figure 2. Owing to the spatially sparse
data structure of 3D-point-cloud data, the object appears thinner
and less visible as the viewer moves from (a) to (b). To solve
this problem, two simple and lightweight processing methods
are available: “voxel filling,” which increases the size of the
points when drawing to avoid thinning of the subject by
pseudo-spatial interpolation, and “surface reconstruction,”
which connects points with polygonal surfaces to form discrete
surfaces and interpolates space by filling the surfaces with the
colors of the vertices.

Fig. 2: Views ofthe subject on the application seen from (a)
far and (b) near

The conventional procedure for 3D surface reconstruction
consists of two steps: (i) reducing noise and simplifying
vertices of input 3D-point-cloud data and (ii) generating a mesh
by connecting adjacent vertices. However, this procedure
targets static structures, and it must balance a tradeoff between
speed and robustness. For example, Delaunay triangulation [3],
with complexity of O(N*?) (where N is the number of vertices
in the point cloud), is fast, but it is sensitive to noise and
requires resources to be devoted to noisereduction. Conversely,
Poisson surface reconstruction [4] is robust, but it has
complexity of O(N?), so it not suitable for real-time purposes.
Furthermore, froma real-time perspective, the simplification of
vertices precedes the mesh generation, and that results in loss
of features related to shape such as normals and curvature.
Conversely, decimation is applied after the mesh is generated,
but without simplification of the decimation process, mesh
generation is resource intensive.

In this study, we solve the above both problems by
sequentially combination of the fast Poisson disk sampling [5]
and 2D Delaunay triangulation. Firstly, we use 2D depth
images instead of 3D-point-cloud to input the method thus it is
faster than the conventional method at the point of spatial
dimension. Our proposed surface-reconstruction method is
shown schematically in Figure 3. Fast Poisson disk sampling,
with complexity of O(N),is a means of “exclusive sampling”;
that is, the next trial for the sampled points is performed within
a radius r to 2r. Varying the value of r according to the depth
value enables downsampling in real 3D space. In addition,
normals and curvature can be calculated from the surrounding
pixel values and added to the sampling to preserve shape
characteristics. And stochastic and exclusive sampling is used
for noise reduction. 2D Delaunay triangulation generates
surfaces so that the distribution of triangulation ratio, which is
O(N) in the case of 2D space, is uniform. Moreover, it is robust

723 IDW 22

because noise is removed in the previous processing (fast
Poisson disk sampling). The methods used in the conventional
procedures for surface reconstruction are compared with those
used in this study in Table 2.

From the above, our proposed the newly surface-
reconstruction method is compatible with real-time and
robustness. Here, as the first step, we focus on slow-moving use
cases such as equipment inspection, maintenance, construction,
and mining. We set the target specification less than 1 second
of update frequency (> 1 fps) for real-time 3D digitization to
adequately track details of an operation in that use cases.

Fig. 3: Schematic of the proposed surface-reconstruction
method: (a) fast Poisson disk sampling, (b) 2D Delaunay
triangulation, and (c) long-edge removal

Table 2: Comparison of conventional and proposed surface-
reconstruction methods: (a) voxel down sampling, (b)
decimation, (c) 3D Delaunay triangulation, and (d) Poisson
surface reconstruction.

Method Real-time Robustness
© v
(@) d) v
(©) v
(b) d) v
Ours v N

2.3 3D Dynamic Geometry Reconstruction

The conventional procedure for 3D surface reconstruction is
to merge multiple input 3D-point-cloud data, reduce noise and
simplify vertices, and connect adjacent vertices to generate a
closed mesh. The difference between 3D dynamic geometry
described in the previous section is that multiple 3D-point-
cloud data are to be input. However, the size of the integrated
3D-point-cloud data is huge, so it takes time to process each
point. The conventional method is thus unsuitable for real-time
purposes.

Accordingly, in this study, the proposed reconstruction
method described in the previous section is implemented for
each sensor and processed in parallel, and the surface data
reconstructed for each 3D surface is integrated at the end.
However, two problems emerge: (i) the need to perform

dynamic and fast 3D Boolean operations on static data and (ii)
the need to determine intersections in open-surface structures
robustly. To solve these two problems, the following two
approaches were tried: (i) region determination by applying a
signed distance function (SDF) and surface stitching focusing
only on intersection regions and (ii) incorporating a mesh-
arrangement method [6] that allows non-diverse structures. As
for the first approach, it has been reported that a triangular mesh
structure can be used to compute the SDF at high speed [7]. A
schematic of the proposed method (3D geometry
reconstruction) is shown in Figure 4. The SDF representation
can simply extract out/in bounding data like (b) by its sign
because all points have a signed distance from their position to
the boundary. Therefore the bounding data like (c), equivalent
intersection, is also simply extracted, and its
computational complexity of that is O(1); only accessing of its

to an

reference data.

From the above, our novel method can process rapidly even
if the data size becomes larger by increasing of input data, edge
sensors, and so.

Outliers Inliers

\

19

1

(e)

(©

Fig. 4: Schematic of the proposed method for 3D geometry
reconstruction: (a) input data, (b) inner and outer regions, (c)
intersection boundaries determined by using SDF, (d) partially
enlarged intersection boundary, and (e) “stitched” intersection
boundary.

3 EXPERIMENTAL RESULTS AND DISCUSION

3.1 Performances of the Platform

Data-update frequency and data-transmission rate—when
the on-site space is converted to 3D digital data and visualized
on the remote user application—are plotted in Figure 5. Voxel
downsampling was used to thin out the data at equal intervals,
and the aforementioned frequency and rate were measured
while the total amount of 3D-point-cloud data was varied. A
real-time development platform, described in 2.1, was used to
visualize the 3D-point-cloud data. Data was transmitted via an
in-house network environment. Frame rate of 3 fps or more was
ensured, and it was confirmed that the on-site information could
be digitized in real time (> 1 fps).

L oo

70

I 50

Frame rate [fps |

F 30

Data transfer rate [Mbps/device

Local density of a point cloud [em™
21 00 0.5 10 L5 2.0

B

Fig. 5: Trade-off between frame rate and appearance quality
(data size). The circles plot and triangles plot respectively

" 5r 10

indicate frame rate and data-transfer rate. The filled regions
indicate standard deviation. The pictures aligned under the x
axis are object views at corresponding local density of the point
cloud.

3.2 View of the point-cloud subject as seen via the
application

Snapshots of the 3D data of the work site visualized on the
remote user’s application and observed from longer and shorter
distances from the subject (golf cart) on the application are
shown in Figure 6. On the left of the figure, the point-cloud data
of'the subject is viewed from (a) longer and (b) shorter distance.
On the right, the mesh data of the subject is viewed from (c)
longer and (d) shorter disnc.

Fig. 6: Views of the point-cloud subject as seen via the
application seen from (a) longer and (b) shorter distance and
views of the meshed subject (golf cart) seen from (c) longer and
(d) shorter distance

Although no significant difference can be seen between (a)
and (c), a clear difference can be seen between (b) and (d). In
other words, it was confirmed that the surface reconstruction
using the proposed method improves visibility at close

IDW '22

724

725

proximity. It was also confirmed that frame rate of 2.25 fps
guarantees real-time performance (> 1 fps).

3.3 Performance of 3D Geometry Reconstruction

Processing speed and robustness in the case of inputting two
meshes, stitching them together (Union processing), and
outputting them as a single mesh were evaluated. The surface
(test) data used for the evaluation are shownin Figure 7.

(a) (b) (c)
Fig. 7: Test data used for performance profiling: the
opposed-overlapped (a) bunnies and (b) dragons from Stanford
3D data and (c) aligned golf cart.

In particular, “small bunny” data (69,451 faces/34,834
vertices) and “large dragon” data (871,414 faces/437,645
vertices) were taken from the Stanford dataset [8], namely, a
noise-free dataset widely used for validation, and as actual data,
“cart” data (27,458 and 30,110 faces/14,652 and 16,036
vertices) were generated by scanning the on-site subject (golf
cart) with the sensors by the method described in Section 2.2.
Other open, general-purpose 3D Boolean libraries, namely,
CGAL[9], libgl [10], and Cork [11], were used for comparison
with the proposed method.

The results of the evaluation are listed in Table 1. When the
dragon data was processed with CGAL, the processing was not
complete even after more than one hour, and the output could
not be confirmed. When the cart data was processed with
CGAL and libgl, processing time could not be measured
because the original structure was greatly disrupted. As for the
“bunny” data, the proposed method (“Ours”) took longer than
CGAL, but the difference in processing times was within 0.1 s.

Table 3: Comparison of processing times of proposed and
conventional reconstruction methods performing zippering

Process time [s]

Subject Bunny Dragon Cart

CGAL 0.331 > 3600 -
libigl 2.057 19.976 -
Cork 2.351 42.755 1.798
Ours 0.423 5.440 0.227

4 CONCLUDINGREMARKS

A platform for real-time 3D digitization of a work site was
developed, and a method for improving reality and generating
3D-geometry data structures at high speed was proposed.

(1) We established a platform for generating free viewpoints
on a user application at a remote location that based on 3D data
measurement taken by multiple ranging sensors installed at the
site. The end-to-end data update frequency is about 3 fps or
higher, and real-time (> 1 fps) operation of the platform was

IDW 22

confirmed.

(2) We proposed the novel surface-reconstruction method to
improve visibility on the user application that generates 3D
surfaces from 2D depth images by the fast Poisson disk
sampling and 2D Delaunay triangulation. Surfaces that were
robust to noise could be generated, and improved visibility at
close proximity was confirmed. The data-update frequency of
2.25 fps confirms the real-time (> 1 fps) nature of the data.

(3) We also proposed the novel method for dynamic
geometry reconstruction to stitch together surface data from
multiple viewpoints and model them as 3D geometry data, an
SDF was combined with a robust mesh-arrangement method,
and 3D Boolean operations were performed on static data
dynamically at high speed. It was confirmed that the proposed
method is robust, and its processing operation is fast compared
to the existing general-purpose 3D Boolean libraries.
Furthermore, in the experiment using the actual data including
noises, the processing time of 0.227 s is 7 times faster or more,
and confirms the target specification of less than 1 s.

These technologies (i.e., the developed platform and
proposed reconstruction method) will
interaction with objects in the field from metaverse space and

enable real-time
could be widely applied to industrial applications. Our future
work is acceleration of processing to expand use cases.

References

[1] Y. Okumura, The Journal of Science Policy and
Research Management,vol. 32, no.3, pp.251-265,
2017.

[2] H.Ning, etal, CoRR abs/2111.09673,2021.

[3] Jonathan Shewchuk Siu-Wing Cheng, Tamal K.
Dey, Delaunay Mesh Generation, Chapman and
Hall/CRC, 2012.

[4] Michael Kazhdan, Matthew Bolitho, and Hugues
Hoppe, SGP °06: Proceedings of the fourth
Eurographics symposium on Geometry processing,
2006.

[5] Robert Bridson, SIGGRAPH ’07:
SIGGRAPH 2007 sketches, 2007.

[6] Gianmarco Cherchi, Marco Livesu, Riccardo
Scateni,and Marco Attene, ACM Trans. Graph.,vol.
39,no0. 16, 2020.

[7]1 J. A. Berentzen and H. Aanes, 2002.

[8] G. Turk and M. Levoy, in Proceedings of the 21st
annual conference on Computer graphics and
interactive techniques, pp. 311-318,1994.

[9] Cgal, Computational Geometry Algorithms Library.
http://www.cgal.org.

[10] Alec Jacobson, Daniele Panozzo, et al., libigl: A

ACM

simple C++ geometry processing library.
https://libigl.github.io/.
[11] G. Bemstein, Cork Boolean library.

https://github.com/gilbo/.

