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ABSTRACT 
We developed a platform for real-time 3D digitization of a 

work site and a method for high-quality, fast 3D-geometry 
modeling are proposed. It was confirmed that the platform 
works in real time, less than the target specification of 1 second, 
and the proposed modeling method is faster and robust than 
conventional methods. 

1 INTRODUCTION 
Many studies have tried to create a so-called “cyber physical 

system” (CPS), which simulates any phenomenon in 
cyberspace by digitizing physical information in the real world 
and feeding back the results to the real world [1]. In recent years, 
a CPS as a “metaverse,” in to which people can enter and 
interact with each other, has been actively researched [2]. 
Distance-measuring technology has also advanced, and low-
cost distance-measuring sensors have become abundant. For 
example, a ranging sensor can digitize and reconstruct in 3D 
the on-site space that exists within the area of its measurement 
range. 

Supposing support of on-site work remotely as a use case, 
we aim to enable remote skilled engineers to provide support to 
on-site workers in a natural manner. In particular, we want to 
improve the quality of work support by providing a realistic 
“metaverse space” of the work site. The space is generated by 
using multiple ranging sensors installed at the site and modeling 
its main elements as 3D geometry data, which allows remote 
users to interact with objects at the site via the metaverse space. 
However, to allow users to interact with each other via objects, 
real-time modeling is necessary. Moreover, when the user is 
immersed in the metaverse space and approaching objects  
modelled as 3D geometry data, it is necessary to maintain a 
resolution that allows the user to view the object data 
sufficiently. In this study, we built a platform for real-time 3D 
digitization of the site and devised a method for improving 
reality and generating 3D-geometry data structures at high 
speed.  

 

2 REAL-TIME 3D RECONSTRUCTION OF A WORK 
SITE 

2.1 Platform Configuration 
The developed platform converts the site space into 3D-

point-cloud data, which can be monitored from remote 
applications by a user at a free viewpoint. The main functional 
blocks that operate on the platform are shown in Figure 1. 

 

 
Fig. 1: Functional blocks of the platform 

The platform is divided into three layers: “edge” extracts  
data frames from multiple ranging sensors installed in the site 
space and converts them into color and depth images; “server” 
converts color and depth images into 3D-point-cloud data and 
stores them; and “app” generates free-viewpoint images for the 
user to view by referring to the 3D-point-cloud data within the 
necessary range. The edge, server, and app environments were 
built separately, and data can be exchanged between them via 
the WebSocket protocol, which is lightweight and allow users 
to define their own formats. In the 3D-point-cloud data 
maintained by the server layer, dynamic regions change from 
moment to moment, and static regions remain unchanged for 
long periods of time. As for the static regions, it is inefficient 
from both practical and bandwidth-intensive standpoints to 
transmit and update 3D-point-cloud data constantly; 
accordingly, the data is scanned in advance, compressed, and 
stored in external storage. 

The hardware used in the experiment is listed in Table 1. 
Connected to the edge layer, Intel RealSense LiDAR cameras  
(L515) were used as the sensors. Their resolution is 1280 × 720 
for color images and 1024 × 768 for depth images. 

 
Table 1. Hardware configuration 

Layer CPU 
Edge 6 cores, 8 GB RAM 
Server 8 cores, 32 GB RAM 
App 10 cores, 64 GB RAM 

 

2.2 3D Dynamic Surface Reconstruction 
Views of the subject in the application seen from (a) far and 
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(b) near are shown in Figure 2. Owing to the spatially sparse 
data structure of 3D-point-cloud data, the object appears thinner 
and less visible as the viewer moves from (a) to (b). To solve 
this problem, two simple and lightweight processing methods  
are available: “voxel filling,” which increases the size of the 
points when drawing to avoid thinning of the subject by 
pseudo-spatial interpolation, and “surface reconstruction,” 
which connects points with polygonal surfaces to form discrete 
surfaces and interpolates space by filling the surfaces with the 
colors of the vertices. 

 
Fig. 2: Views of the subject on the application seen from (a) 

far and (b) near 
 
The conventional procedure for 3D surface reconstruction 

consists of two steps: (i) reducing noise and simplifying 
vertices of input 3D-point-cloud data and (ii) generating a mesh 
by connecting adjacent vertices. However, this procedure 
targets static structures, and it must balance a tradeoff between 
speed and robustness. For example, Delaunay triangulation [3], 
with complexity of O(N3/2) (where N is the number of vertices  
in the point cloud), is fast, but it is sensitive to noise and 
requires resources to be devoted to noise reduction. Conversely, 
Poisson surface reconstruction [4] is robust, but it has 
complexity of O(N3), so it not suitable for real-time purposes. 
Furthermore, from a real-time perspective, the simplification of 
vertices precedes the mesh generation, and that results in loss 
of features related to shape such as normals and curvature.  
Conversely, decimation is applied after the mesh is generated, 
but without simplification of the decimation process, mesh 
generation is resource intensive. 

In this study, we solve the above both problems by 
sequentially combination of the fast Poisson disk sampling [5] 
and 2D Delaunay triangulation. Firstly, we use 2D depth 
images instead of 3D-point-cloud to input the method thus it is 
faster than the conventional method at the point of spatial 
dimension. Our proposed surface-reconstruction method is 
shown schematically in Figure 3. Fast Poisson disk sampling, 
with complexity of O(N), is a means of “exclusive sampling”; 
that is, the next trial for the sampled points is performed within 
a radius r to 2r. Varying the value of r according to the depth 
value enables downsampling in real 3D space. In addition, 
normals and curvature can be calculated from the surrounding 
pixel values and added to the sampling to preserve shape 
characteristics. And stochastic and exclusive sampling is used 
for noise reduction. 2D Delaunay triangulation generates  
surfaces so that the distribution of triangulation ratio, which is 
O(N) in the case of 2D space, is uniform. Moreover, it is robust 

because noise is removed in the previous processing (fast 
Poisson disk sampling). The methods used in the conventional 
procedures for surface reconstruction are compared with those 
used in this study in Table 2.

From the above, our proposed the newly surface-
reconstruction method is compatible with real-time and 
robustness. Here, as the first step, we focus on slow-moving use 
cases such as equipment inspection, maintenance, construction, 
and mining. We set the target specification less than 1 second 
of update frequency ( > 1 fps ) for real-time 3D digitization to 
adequately track details of an operation in that use cases. 

 
Fig. 3: Schematic of the proposed surface-reconstruction 

method: (a) fast Poisson disk sampling, (b) 2D Delaunay 
triangulation, and (c) long-edge removal 

 
Table 2: Comparison of conventional and proposed surface-

reconstruction methods: (a) voxel down sampling, (b) 
decimation, (c) 3D Delaunay triangulation, and (d) Poisson 
surface reconstruction.  

Method Real-time Robustness 

(a) 
(c)   
(d)   

(b) 
(c)   
(d)   

Ours   
 

2.3 3D Dynamic Geometry Reconstruction 
The conventional procedure for 3D surface reconstruction is 

to merge multiple input 3D-point-cloud data, reduce noise and 
simplify vertices, and connect adjacent vertices to generate a 
closed mesh. The difference between 3D dynamic geometry  
described in the previous section is that multiple 3D-point-
cloud data are to be input. However, the size of the integrated 
3D-point-cloud data is huge, so it takes time to process each 
point. The conventional method is thus unsuitable for real-time 
purposes. 

Accordingly, in this study, the proposed reconstruction 
method described in the previous section is implemented for 
each sensor and processed in parallel, and the surface data 
reconstructed for each 3D surface is integrated at the end. 
However, two problems emerge: (i) the need to perform 
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dynamic and fast 3D Boolean operations on static data and (ii) 
the need to determine intersections in open-surface structures  
robustly. To solve these two problems, the following two 
approaches were tried: (i) region determination by applying a 
signed distance function (SDF) and surface stitching focusing 
only on intersection regions and (ii) incorporating a mesh-
arrangement method [6] that allows non-diverse structures. As 
for the first approach, it has been reported that a triangular mesh 
structure can be used to compute the SDF at high speed [7]. A 
schematic of the proposed method (3D geometry 
reconstruction) is shown in Figure 4. The SDF representation 
can simply extract out/in bounding data like (b) by its sign 
because all points have a signed distance from their position to 
the boundary. Therefore the bounding data like (c), equivalent 
to an intersection, is also simply extracted, and its  
computational complexity of that is O(1); only accessing of its  
reference data.  

From the above, our novel method can process rapidly even 
if the data size becomes larger by increasing of input data, edge 
sensors, and so. 

 
Fig. 4: Schematic of the proposed method for 3D geometry 

reconstruction: (a) input data, (b) inner and outer regions, (c) 
intersection boundaries determined by using SDF, (d) partially 
enlarged intersection boundary, and (e) “stitched” intersection 
boundary. 
 

3 EXPERIMENTAL RESULTS AND DISCUSION 

3.1 Performances of the Platform 
Data-update frequency and data-transmission rate—when 

the on-site space is converted to 3D digital data and visualized 
on the remote user application—are plotted in Figure 5. Voxel 
downsampling was used to thin out the data at equal intervals , 
and the aforementioned frequency and rate were measured 
while the total amount of 3D-point-cloud data was varied. A 
real-time development platform, described in 2.1, was used to 
visualize the 3D-point-cloud data. Data was transmitted via an 
in-house network environment. Frame rate of 3 fps or more was 
ensured, and it was confirmed that the on-site information could 
be digitized in real time ( > 1 fps ). 

 
Fig. 5: Trade-off between frame rate and appearance quality 

(data size). The circles plot and triangles plot respectively 
indicate frame rate and data-transfer rate. The filled regions  
indicate standard deviation. The pictures aligned under the x 
axis are object views at corresponding local density of the point 
cloud. 
 

3.2 View of the point-cloud subject as seen via the 
application 

Snapshots of the 3D data of the work site visualized on the 
remote user’s application and observed from longer and shorter 
distances from the subject (golf cart) on the application are 
shown in Figure 6. On the left of the figure, the point-cloud data 
of the subject is viewed from (a) longer and (b) shorter distance. 
On the right, the mesh data of the subject is viewed from (c) 
longer and (d) shorter distance. 

 
Fig. 6: Views of the point-cloud subject as seen via the 

application seen from (a) longer and (b) shorter distance and 
views of the meshed subject (golf cart) seen from (c) longer and 
(d) shorter distance 

 
Although no significant difference can be seen between (a) 

and (c), a clear difference can be seen between (b) and (d). In 
other words, it was confirmed that the surface reconstruction 
using the proposed method improves visibility at close 

(((((( )))))

IDW ’22       724



 

 

proximity. It was also confirmed that frame rate of 2.25 fps 
guarantees real-time performance ( > 1 fps ). 

3.3 Performance of 3D Geometry Reconstruction 
Processing speed and robustness in the case of inputting two 

meshes, stitching them together (Union processing), and 
outputting them as a single mesh were evaluated. The surface 
(test) data used for the evaluation are shown in Figure 7. 

 

 
Fig. 7: Test data used for performance profiling: the 

opposed-overlapped (a) bunnies and (b) dragons from Stanford 
3D data and (c) aligned golf cart. 

 
In particular, “small bunny” data (69,451 faces/34,834 

vertices) and “large dragon” data (871,414 faces/437,645 
vertices) were taken from the Stanford dataset [8], namely, a 
noise-free dataset widely used for validation, and as actual data, 
“cart” data (27,458 and 30,110 faces/14,652 and 16,036 
vertices) were generated by scanning the on-site subject (golf 
cart) with the sensors by the method described in Section 2.2. 
Other open, general-purpose 3D Boolean libraries, namely,  
CGAL [9], libgl [10], and Cork [11], were used for comparison 
with the proposed method. 

The results of the evaluation are listed in Table 1. When the 
dragon data was processed with CGAL, the processing was not 
complete even after more than one hour, and the output could 
not be confirmed. When the cart data was processed with 
CGAL and libgl, processing time could not be measured 
because the original structure was greatly disrupted. As for the 
“bunny” data, the proposed method (“Ours”) took longer than 
CGAL, but the difference in processing times was within 0.1 s. 

 
Table 3: Comparison of processing times of proposed and 

conventional reconstruction methods performing zippering 

Subject 
Process time [s] 

Bunny Dragon Cart 
CGAL 0.331 > 3600 - 
libigl 2.057 19.976 - 
Cork 2.351 42.755 1.798 
Ours 0.423 5.440 0.227 

 

4 CONCLUDING REMARKS 
A platform for real-time 3D digitization of a work site was 

developed, and a method for improving reality and generating 
3D-geometry data structures at high speed was proposed. 

(1) We established a platform for generating free viewpoints  
on a user application at a remote location that based on 3D data 
measurement taken by multiple ranging sensors installed at the 
site. The end-to-end data update frequency is about 3 fps or 
higher, and real-time ( > 1 fps ) operation of the platform was 

confirmed. 
(2) We proposed the novel surface-reconstruction method to 

improve visibility on the user application that generates 3D 
surfaces from 2D depth images by the fast Poisson disk 
sampling and 2D Delaunay triangulation. Surfaces that were 
robust to noise could be generated, and improved visibility at 
close proximity was confirmed. The data-update frequency of 
2.25 fps confirms the real-time ( > 1 fps ) nature of the data.  

(3) We also proposed the novel method for dynamic 
geometry reconstruction to stitch together surface data from 
multiple viewpoints and model them as 3D geometry data, an 
SDF was combined with a robust mesh-arrangement method, 
and 3D Boolean operations were performed on static data 
dynamically at high speed. It was confirmed that the proposed 
method is robust, and its processing operation is fast compared 
to the existing general-purpose 3D Boolean libraries . 
Furthermore, in the experiment using the actual data including 
noises, the processing time of 0.227 s is 7 times faster or more, 
and confirms the target specification of less than 1 s. 

These technologies (i.e., the developed platform and 
proposed reconstruction method) will enable real-time 
interaction with objects in the field from metaverse space and 
could be widely applied to industrial applications. Our future 
work is acceleration of processing to expand use cases. 
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