

Comparative Study on Field-Pole Magnetic Circuits and Output Characteristics of Rim-Drive Rotating Machines

*Keita TSUZUKI¹, Mitsuru IZUMI², and Dai OIKAWA³

¹ National Institute of Technology, Toyota College, Department of Information and Computer Engineering, Toyota, Aichi, Japan

² Tokyo University of Marine Science and Technology, Office of Management and Strategy for Marine Studies, Minato-ku, Tokyo, Japan

³ National Institute of Technology, Toyota College, Department of Electrical and Electronic Engineering, Toyota, Aichi, Japan

Abstract

The reduction of CO₂ emissions in maritime and port sectors has become an urgent issue, driving the need for electrification and highly efficient rotating machines. In this study, we investigate rim-drive rotating machines incorporating high-temperature superconducting (HTS) technology as a pathway toward carbon-neutral ports.

A kW-class HTS rim-drive prototype was designed using sREBCO-coated conductors, and detailed finite element method (FEM) analyses were conducted to evaluate its electromagnetic characteristics under port-relevant operating conditions. Comparative simulations examined the impact of different magnetic circuit structures and field-pole configurations.

These comparisons indicate that superconducting configurations can provide higher output density and efficiency, while also introducing challenges. These findings clarify performance trade-offs across magnetic circuit structures and highlight the potential of compact, high-efficiency HTS rim-drive machines for next-generation port applications.

This presentation will focus on the design methodology, comparative evaluations, and practical implications for deploying superconducting rim-drive rotating machines in carbon-neutral port infrastructure.

References

- 1) H. Ouldhamrane, J.-F. Charpentier, F. Khoucha, A. Zaoui, Y. Abdelhalim, and M. Boudour, “Optimal Design of Axial Flux Permanent Magnet Motors for Ship RIM-Driven Thruster,” *Machines*, vol. 10, no. 10, pp. 1–16, Oct. 2022, doi: 10.3390/machines10100932.
- 2) **K. Tsuzuki**, S. Yamada, Y. Matsumoto, D. Oikawa and T. Tsukamoto, “Study of Superconducting System Under Hydrogen Demand for Carbon Neutral Port,” *IEEE Trans. Appl. Supercond.*, vol. 34, no. 3, pp. 1–4, May 2024, Art no. 3601804, doi: 10.1109/TASC.2024.3360940.
- 3) E. Shaanika, M. Miki, C. Bocquel, B. Felder, **K. Tsuzuki**, T. Ida, M. Izumi, S. Englebretson, R. Chin, J. Kolehmainen, M. Morita, H. Teshima, “Core Loss of a Bulk HTS Synchronous

Machine at 2 and 3 T Rotor Magnetisation,” *IEEE Trans. Appl. Supercond.*, vol. 30, no. 1, pp. 1–6, Jan. 2020, Art no. 5200106, doi: 10.1109/TASC.2019.2927587.

Keywords: Rim-Drive Rotating Machine, HTS Field Pole, FEM Analysis, Carbon-Neutral Port