

Fabrication and Properties of integrated crystal-coupled SQUID for proximity detection of Time-Reversal Symmetry-Broken Superconductors

*Hirotake Yamamori^{1,2}, Mitsuhiro Teshigawara³, Makoto Ono³, Rikizo Yano³, Yasunori Mawatari¹, and Satoshi Kashiwaya³

¹ National Institute of Advanced industrial Science and Technology, 1-1-1 Umezono Tsukuba, Ibaraki, 305-8563, Japan

² National Astronomical Observatory of Japan, Mitaka, Tokyo, 181-0015, Japan

³ Department of Applied Physics, Nagoya University, Nagoya, Aichi, 464-8603, Japan

Abstract

We report on the fabrication and properties of a chip-based superconducting quantum interference device (SQUID) tailored to detect broken time-reversal symmetry (TRS) in unconventional superconductors. TRS breaking can give rise to spontaneous magnetic fields or anomalous flux quantization associated with complex superconducting order parameters such as chiral p -wave symmetry[1]. Our device features a planar SQUID layout with high magnetic sensitivity, onto which superconducting samples are directly placed to maximize coupling between the sample and the SQUID loop[2]. This configuration enables the detection of minute spontaneous magnetic signals originating from TRS-breaking superconductors, such as Sr_2RuO_4 and UPt_3 , without the need for a scanning mechanism. This platform also provides a compact and sensitive method for probing the magnetization of crystals several microns in size.

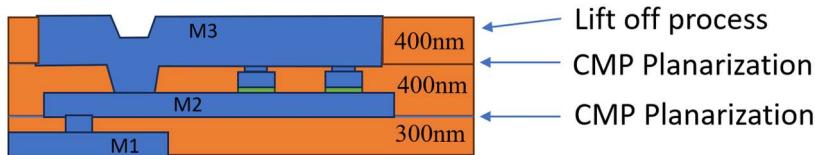


Figure 1 Schematic cross-section of the SQUID device. The top surface is planarized using chemical mechanical polishing (CMP) and lift-off processes, providing a flat platform suitable for placing samples directly on the device

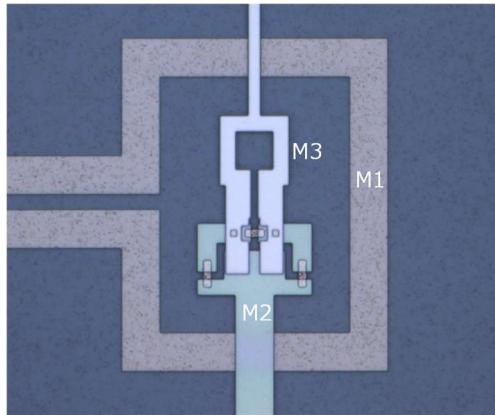
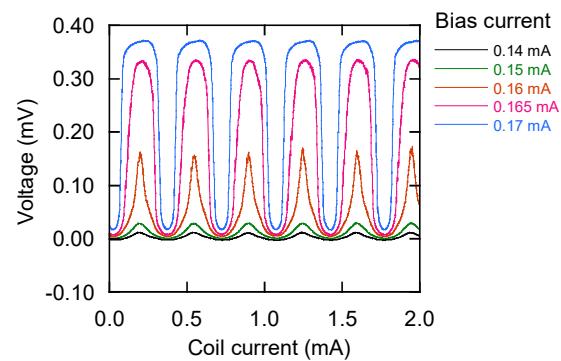



Figure 2 Microscope image of SQUID

Figure 3 V - Φ characteristics measured at 4 K

Acknowledgement

This work was partially supported by JSPS KAKENHI Grant Number JP24K00556.

References

- 1) Kallin, C. & Berlinsky, J. Chiral superconductors. *Reports on Progress in Physics* 79, 054502 (2016).
- 2) Teshigawara, M., Mawatari, Y., Yamamori, H., Yano, R. and Kashiwaya, S. Evaluation of Magnetic Field Induced by Broken Time-Reversal Symmetry Superconductors. In *Proceedings of the 29th International Conference on Low Temperature Physics (LT29)* 011069 (2023).

Keywords: *SQUID, chiral p -wave symmetry, Time-Reversal Symmetry, Planarization process, proximity detection*